
Journal of Combinatorial Optimization (2019) 37:1312–1326
https://doi.org/10.1007/s10878-018-0354-y

LP-based pivoting algorithm for higher-order correlation
clustering

Takuro Fukunaga1

Published online: 22 October 2018
© The Author(s) 2018

Abstract
Correlation clustering is an approach for clustering a set of objects from given pairwise
information. In this approach, the given pairwise information is usually represented by
an undirected graph with nodes corresponding to the objects, where each edge in the
graph is assigned a nonnegative weight, and either the positive or negative label. Then,
a clustering is obtained by solving an optimization problem of finding a partition of
the node set that minimizes the disagreement or maximizes the agreement with the
pairwise information. In this paper, we extend correlation clusteringwith disagreement
minimization to deal with higher-order relationships represented by hypergraphs. We
give two pivoting algorithms based on a linear programming relaxation of the problem.
One achieves an O(k log n)-approximation,where n is the number of nodes and k is the
maximum size of hyperedges with the negative labels. This algorithm can be applied
to any hyperedges with arbitrary weights. The other is an O(r)-approximation for
complete r -partite hypergraphs with uniform weights. This type of hypergraphs arise
from the coclustering setting of correlation clustering.

Keywords Correlation clustering · Coclustering · LP-rounding algorithm

1 Introduction

1.1 Problem formulation

In this paper, we consider approximation algorithms for the hypergraph correlation
clustering. In the hypergraph correlation clustering, a problem instance consists of an

A preliminary version of this paper was published at the 24th International Computing and Combinatorics
Conference (COCOON 2018).

B Takuro Fukunaga
takuro.fukunaga@riken.jp

1 RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-018-0354-y&domain=pdf
http://orcid.org/0000-0003-3285-2876

Journal of Combinatorial Optimization (2019) 37:1312–1326 1313

undirected hypergraph G = (V , E) with the node set V and the hyperedge set E , and
the label and the weight of each hyperedge in E . The label on a hyperedge is either
positive or negative. We call a hyperedge positive if it is assigned the positive label,
and negative otherwise. The sets of positive and negative hyperedges are denoted by
E+ and E−, respectively (i.e., E is the disjoint union of E+ and E−). The weight of
each hyperedge e is a nonnegative real number, denoted by w(e).

The hypergraph correlation clustering is an optimization problem of finding a clus-
tering of the given hypergraphG = (V , E). A clustering C ofG is defined as a partition
of V into nonempty subsets. Each node set in C is called a cluster. A hyperedge e in G
is defined to disagree with a clustering C if either of the following statements is true:

– e is a positive hyperedge, and some two end nodes of it belong to different clusters
of C;

– e is a negative hyperedge, and all of its end nodes belong to the same cluster of C.
Then, the objective of the problem is to find a clustering minimizing the total weight
of hyperedges that disagree with the clustering.

In a part of this paper, we focus on a special type of hypergraphs called complete
r-partite hypergraphs. A hypergraph is called r -partite if its node set can be divided
into disjoint r subsets V1, . . . , Vr so that each hyperedge includes exactly one node
from Vj for each j = 1, . . . , r . An r -partite hypergraph is complete if each tuple
{v1, . . . , vr } ∈ V1×· · ·×Vr is included as a hyperedge.We refer to the set of instances
with complete r -partite hypergraphs and uniform hyperedge weights as coclustering
setting; the reason for this name will be explained below.

1.2 Motivation

Correlation clustering is originally an approach for computing a clustering from given
pairwise information. It was introduced by Bansal et al. (2004). They proposed repre-
senting the pairwise information as a graph with nodes corresponding to the objects
to be clustered. Informations represented by the graph are possibly inconsistent due to
existence of noise or observation errors. The purpose of correlation clustering is to find
a clustering matching the pairwise information to the greatest degree possible. This
purpose presents two optimization problems defined on the graph naturally; one seeks
a clustering that minimizes the disagreement, and the other seeks a clustering that
maximizes the agreement. Since these problems are NP-hard, several approximation
algorithms have been proposed for them, and have been successfully applied to numer-
ous applications in machine learning and computational biology (Ben-Dor et al. 1999;
Cohen and Richman 2002; Filkov and Skiena 2003; McCallum and Wellner 2003).
We will review these previous studies briefly in Sect. 2.

In several applications, pairwise information does not give enough information for
the extraction of precise clusterings, and hence it is motivated to study clustering from
higher-order information, which is modeled as the hypergraph correlation clustering.
Even in the hypergraph correlation clustering, we can consider both the disagreement
minimization and the agreement maximization. However, since this paper discusses
only the disagreement minimization, we gave the disagreement minimization formu-
lation above. A straightforward idea for the hypergraph correlation clustering is to

123

1314 Journal of Combinatorial Optimization (2019) 37:1312–1326

reduce the problem to the graph correlation clustering by expanding each hyperedge
to some graphs like cliques. However, this idea does not give efficient algorithms as
we will see in Sect. 3.2.

Study on the hypergraph correlation clustering was initiated by Kim et al. (2011)
for an application to the image segmentation. Subsequently Kappes et al. (2016) and
Kim et al. (2014) also considered the same problem. All of these studies are similar
in that:

– they proposed linear programming (LP) relaxations for the hypergraph correlation
clustering (with the disagreement minimization objective), and presented algo-
rithms using LP solvers or tailored cutting-plane algorithms;

– when the solution output by the algorithms is not integer, they round it by a simple
procedure of rounding up an arbitrary non-zero variable into an integer;

– they empirically showed that introducing higher-order relationships into correla-
tion clustering improves the quality of image segmentation.

These observations indicate that efficient algorithms for the hypergraph correlation are
useful in practice. On the other hand, to the best of our knowledge, no approximation
algorithmwith a provable performance guarantee is known for the problem.Motivated
by this fact, our aim is to present performance guarantee of approximation algorithms
for the hypergraph correlation clustering.

In addition to the general case of the hypergraph correlation clustering,wewill study
the coclustering setting of the problem. Coclustering denotes the task of clustering the
objects which are categorized into two or more classes, and relationships of objects
from different classes are considered. For example, this setting arises when we find
a clustering of documents and words from word occurrences in documents. It is also
known to be useful for clustering of gene expression data. To distinguish clustering
from pairwise relationships and higher-order relationships, in this paper, we call the
former by biclustering, and the latter by coclustering.

In correlation clustering, the biclustering setting implies that the given information
is represented by bipartite graphs. This setting has been studied extensively (Ailon
et al. 2012; Amit 2004; Chawla et al. 2015). These previous studies show that the
disagreement minimization problem with complete bipartite graphs and uniform edge
weights admits constant-factor approximation algorithms. In contrast, the coclustering
setting has not been studied in the context of correlation clustering although it seems
useful; for example, consider clustering users, search key words, and goods from
purchase records in an E-commerce website; if a user i purchased a good j after
searching with a key word s, then the category of i , j , and s are likely same, and hence
solving the hypergraph correlation clustering defined from these order-3 relationships
gives a more precise clustering rather than computing from pairwise relationships. We
note that the hypergraph defined in this situation is 3-partite.

1.3 Contributions

We present two approximation algorithms with approximation guarantees for the
hypergraph correlation clustering. One of the algorithms is for general hypergraphs.
It has an O(k log n)-approximation guarantee (Theorem 1), where n is the number

123

Journal of Combinatorial Optimization (2019) 37:1312–1326 1315

of nodes and k is the maximum size of hyperedges assigned the negative label. In
other words, for any instance of the hypergraph correlation clustering, our algo-
rithm outputs a clustering the objective function value of which is within a factor
of O(k log n) from the optimal. The other algorithm is for the coclustering setting (the
given hypergraph is complete r -partite and hyperedgeweights are uniform). It achieves
an O(r)-approximation guarantee (Theorem 2). Note that this approximation factor
is a constant when r is a constant, and hence it extends the constant-approximation
guarantees of Ailon et al. (2012), Amit (2004) and Chawla et al. (2015) for the dis-
agreement minimization problem with complete bipartite graphs and uniform edge
weights.

Our algorithms are pivoting algorithms, that compute a clustering by deciding a
pivoting node and a cluster including it repeatedly. Most of the known approximation
algorithms for correlation clustering are this type of algorithms. In our algorithms, the
choice of a pivoting node and its cluster is based on an LP relaxation of the problem.
Our LP relaxation is a straightforward extension of the one considered in Charikar
et al. (2005), Chawla et al. (2015) and Demaine et al. (2006) for the disagreement
minimization problem with graphs. Moreover, it is almost same as or simpler than
those used in the previous studies Kappes et al. (2016) and Kim et al. (2011, 2014)
on the hypergraph correlation clustering. Indeed, our algorithm works even with the
LP relaxations considered in Kappes et al. (2016) and Kim et al. (2011, 2014), and
hence it can replace the rounding algorithms therein.

In our O(k log n)-approximation algorithm, we use the region-growing idea to
define the cluster including a chosen pivoting node. Indeed, our algorithm general-
izes the O(log n)-approximation algorithms in Charikar et al. (2005) and Demaine
et al. (2006) for graphs. On the other hand, our O(r)-approximation algorithm for the
coclustering setting is based on a new idea. When r = 2, the coclustering setting is
equivalent to the disagreement minimization on complete bipartite graphs with uni-
form weights. Although several constant-factor approximation algorithms are known
for this case (Ailon et al. 2012; Amit 2004; Chawla et al. 2015), it seems difficult to
extend them to r ≥ 3 because they crucially relies on a structure of graphs representing
inconsistent informations. Hence we design a new algorithm from scratch. It achieved
a slightly worse approximation factor for r = 2 compared with the previous studies
on the complete bipartite graphs.

1.4 Organization

The rest of this paper is organized as follows. Section 2 surveys related previous stud-
ies. Section 3 introduces notations, the LP relaxation used in our algorithms, and an
outline of our algorithms. Section 3 also explains that reducing the hypergraph corre-
lation problem to the graph correlation clustering is not efficient. Section 4 presents
our O(k log n)-approximation algorithm, and Sect. 5 gives our O(r)-approximation
algorithm for the correlation clustering setting. Section 6 concludes the paper.

123

1316 Journal of Combinatorial Optimization (2019) 37:1312–1326

2 Related work

2.1 Correlation clustering

Both of the agreement maximization and the disagreement minimization formulations
of correlation clusteringwere introduced by Bansal et al. (2004). Charikar et al. (2005)
gave a factor 0.7664 approximation algorithm for the agreement maximization. For
the disagreement minimization, Charikar et al. (2005) and Demaine et al. (2006) gave
factor O(log n) approximations. Demaine et al. also proved that the disagreementmin-
imization is equivalent to the minimum multicut problem. This equivalence indicates
that obtaining a constant-factor approximation for the disagreement minimization is
unique-games hard because of the hardness result on the minimum multicut problem
given in Chawla et al. (2006).

Several special cases of the disagreement minimization also have been studied
well. For example, Amit (2004), Ailon et al. (2012) and Chawla et al. (2015)
considered the case where the graph is complete bipartite and weights are uniform.
They gave constant-factor approximation algorithms for this case, and the current
best approximate factor among them is 3 due to Chawla et al. (2015). Chawla et al.
also considered complete graphs, and presented a 2.06-approximation algorithm for
uniform weights, and 1.5-approximation algorithm for weights satisfying the triangle
inequality.

Note that the above studies on correlation clustering all consider graphs. To the
best of our knowledge, the correlation clustering over hypergraphs have been studied
only in Kappes et al. (2016) and Kim et al. (2011, 2014), and no algorithm with a
performance guarantee is known.

2.2 Coclustering

Biclustering of data represented by a matrix has been studied since the 1970s (Har-
tigan 1972). There has been a huge number of algorithms proposed so far, and we
name a few of them Dhillon et al. (2003), Shan and Banerjee (2008) and Zha et al.
(2001). These algorithms have been successfully applied to numerous unsupervised
learning tasks (Chen et al. 2015; Zhu et al. 2015). In particular, clustering on gene
expression data (Cheng and Church 2000; Madeira et al. 2010) and document clas-
sification (Bisson and Hussain 2008; Dhillon 2001; Hussain et al. 2010) are studied
actively. Compared with biclustering, coclustering of higher-order relational data has
not been extensively studied so far. Zhao and Zaki (2005) proposed a graph-based
algorithm for coclustering. Hatano et al. (2017) proposed a coclustering algorithm
based on sampling hypergraph multicuts. Other previous studies Papalexakis et al.
(2013) and Peng and Li (2011) depend on an algebraic approach known as tensor rank
decomposition.

123

Journal of Combinatorial Optimization (2019) 37:1312–1326 1317

3 Preliminaries

3.1 Notations

Let G = (V , E) be a hypergraph with the node set V and the hyperedge set E .
Throughout this paper, we let n denote the cardinality of V (i.e., n = |V |). The
cardinality of a hyperedge e is called the rank of e, and the rank of a hypergraph G
is defined as the maximum rank of hyperedges in G. Note that a hyperedge of rank
2 and a hypergraph of rank 2 are an edge and a graph, respectively. For U ⊆ V and
H ⊆ E , let δ(U ; H) denote the set of hyperedges in H that include nodes both in U
and V \U , and H [U] denote the set of hyperedges in H that include no nodes from
V \U . G[U] denotes the sub-hypergraph of G induced byU (i.e., hypergraph with the
node set U and the hyperedge set E[U]).

3.2 Reduction to the graph correlation clustering

A natural approach for solving the hypergraph correlation clustering is to apply an
existing algorithm for the graph correlation clustering to the graph obtained by trans-
forming the given hypergraph. However, the transformation of a hypergraph into a
graph may change the structure of the problem drastically. To see this, suppose that
a positive hyperedge of rank k′ is replaced by a clique that consists of

(k′
2

)
positive

edges. In the original hypergraph, the weight of a positive hyperedge is counted in the
disagreement only once if the nodes in the hyperedge belong to more than one cluster.
In contrast, in the corresponding graph, the contribution of the edges in the clique to the
measured disagreement depends on how the clique is divided. For example, if all but
one of the nodes in the clique belong to the same cluster, the weights of k′−1 edges are
counted, whereas if the nodes are all divided into different clusters, the weights of

(k′
2

)

edges are counted. Thus, the contributions are very different when the clique is divided
into two clusters and when it is divided into k′ clusters. Because of this fact, applying
the best-known graph correlation clustering algorithm to the obtained graph only gives
an O(k′ log n)-approximation even if all negative hyperedges in the given hypergraph
are order-2, while our algorithm given in Sect. 4 attains an O(log n)-approximation
in this case. It seems hard to avoid this phenomenon even if we consider other ways
of transformation. When the given hypergraph includes a negative hyperedge of order
larger than 3, it seems difficult to bound the approximation factor given by the above
approach; even if a clustering partitions a negative hyperedge into at least two clusters
(and hence it incurs no cost from the hyperedge), an edge generated by transforming
the negative hyperedge belongs to the same cluster in the clustering (and it incurs a
positive cost).

3.3 Overview of our algorithms

In this subsection, we introduce our algorithms for the hypergraph correlation cluster-
ing. Our algorithms are based on an LP obtained by relaxing an integer programming
(IP) formulation of the problem. We first introduce this IP formulation.

123

1318 Journal of Combinatorial Optimization (2019) 37:1312–1326

This formulation optimizes the following variables, which take numbers in {0, 1}:
– A variable xuv for each pair of nodes u, v ∈ V ; it is 0 if u and v belong to the same
cluster, and it is 1 otherwise;

– A variable xe for each hyperedge e; it is 0 if all nodes in e are included in a cluster,
and it is 1 otherwise.

If a positive hyperedge e ∈ E+ is included in a cluster, this implies that any two
nodes u and v included in e belong to the same cluster. The following constraint
formulates this condition:

xuv ≤ xe, ∀e ∈ E+,∀{u, v} ⊆ e. (1)

If a negative hyperedge e = {v1, . . . , vr } ∈ E− intersects more than one cluster,
then a node v1 and some of the other nodes v2, . . . , vr belong to different clusters.
This is represented by

xe ≤
r−1∑

i=1

xvivi+1 , ∀e = {v1, . . . , vr } ∈ E−. (2)

Here, the ordering of nodes included in e is fixed arbitrarily.
If two nodes u and v belong to the same cluster, and if v and z also do, then all of

these three nodes belong to the same cluster. This means that if xuv = xvz = 0, then
xuz = 0 must hold. Thus, the variables satisfy the following triangle inequalities:

xuz ≤ xuv + xvz, ∀u, v, z ∈ V . (3)

Our IP formulation optimizes over these constraints. The disagreement objective func-
tion is

∑
e∈E+ w(e)xe + ∑

e∈E− w(e)(1 − xe). The LP relaxation is obtained from
the IP formulation by relaxing the range of each variable to [0, 1]. Specifically, it is
described as follows:

minimize
∑

e∈E+
w(e)xe +

∑

e∈E−
w(e)(1 − xe)

subject to (1), (2), (3),
xuv ∈ [0, 1], ∀u, v ∈ V ,

xe ∈ [0, 1], ∀e ∈ E .

(4)

For convenience, we let xvv = 0 for all v ∈ V in the rest of this paper although these
variables do not appear in LP (4).

Our algorithms first compute an optimal solution x for the LP relaxation (4).
Then they construct a clustering from x in iterations. We let U refer to the set of

nodes that belong to no cluster yet during the algorithm, where it is initialized to the V
at the beginning of the algorithm. In each iteration, the algorithm computes a cluster
by the following three steps:

(i) choose a node v from U (we call it pivoting node);

123

Journal of Combinatorial Optimization (2019) 37:1312–1326 1319

(ii) define the cluster containing v as Bx,v,U (ξ) := {u ∈ U : xuv < ξ} from some
radius ξ ∈ [0, 1];

(iii) remove the nodes in Bx,v,U (ξ) from U and the hypergraph.

Selection of v in Step (i) and the definition of ξ used in Step (ii) are customized in two
variations of our algorithms. Roughly speaking, we optimize them so that the ratio
of weights of disagreed hyperedges incident to Bx,v,U (ξ) to the fractional weights of
hyperedges incident to Bx,v,U (ξ) defined from x is minimized. Refer to Sects. 4 and
5 for the details. The algorithms are described in Algorithm 1.

Algorithm 1 LP-based pivoting algorithm for hypergraph correlation clustering
Input: a hypergraph G = (V , E) with E = E+ ∪ E− and a nonnegative weight w(e) for each e ∈ E
Output: a clustering C of V ,
1: C ←− ∅, U ←− V
2: compute an optimal solution x of (4)
3: while U �= ∅ do
4: compute v ∈ U and ξ ∈ [0, 1] (details are described in Sections 4 and 5)
5: C ←− C ∪ {Bx,v,U (ξ)}, U ←− U\Bx,v,U (ξ)

6: remove all hyperedges intersecting Bx,v,U (ξ) from E
7: end while
8: output C

4 O(k logn)-approximation for general hypergraphs

In this section, we discuss general hypergraphs with arbitrary hyperedge weights.
First, let us introduce several notations. We let x and L refer to an optimal solution
for (4) and its objective value. For a hyperedge e and a node v, let d(e, v) and d ′(e, v)

denote minu∈e xvu and maxu∈e xvu , respectively. For ξ ∈ [0, 1], we define Fv,x,E (ξ)

and Cv,x,E (ξ) by

Fv,x,E (ξ) := L

n
+

∑

e∈E+[Bx,v,U (ξ)]
w(e)xe +

∑

e′∈δ(Bx,v,U (ξ);E+)

w(e′)xe′
ξ − d(e′, v)

d ′(e′, v) − d(e′, v)

and

Cv,x,E (ξ) :=
∑

e∈δ(Bx,v,U (ξ);E+)

w(e),

where Cv,x,E (ξ) is defined to be +∞ if δ(Bx,v,U (ξ); E+) = ∅. We note that if
e′ ∈ δ(Bx,v,U (ξ); E+), then d(e′, v) ≤ ξ ≤ d ′(e′, v) holds, and hence the third term
in Fv,x,E (ξ) is at most

∑
e′∈δ(Bv,x,U (ξ);E) w(e′)xe′ . Below, we omit the subscripts of

Bx,v,U (ξ), Fv,x,E (ξ), and Cv,x,E (ξ) when they are clear from the context. Roughly
speaking, the second and the third terms of F(ξ) represent how much the objective
value of x in (4) is reduced when the positive hyperedges incident to B(ξ) are removed

123

1320 Journal of Combinatorial Optimization (2019) 37:1312–1326

from the hypergraph, and C(ξ) represents how much the disagreement of the positive
hyperedges is increased when B(ξ) is added as a cluster to a clustering.

Now, we are ready to describe details of our algorithm for general hypergraphs. In
this variation, the pivoting node v is chosen arbitrarily from U . The radius ξ defining
the cluster B(ξ) including v is chosen from [0, 1/(2k)] so that C(ξ)/F(ξ) is mini-
mized. Although this is a continuous optimization problem, it can be done in O(n)

evaluations of the objective because of the following reason. Call the nodes in U
by u1, . . . , u|U | so that xvu1 ≤ xvu2 · · · ≤ xvu|U | holds. Let i ∈ {1, . . . , |U | − 1}.
For any ξ ′, ξ ′′ ∈ (xvui , xvui+1] with ξ ′ ≤ ξ ′′, we have B(ξ ′) = B(ξ ′′), from
which F(ξ ′) ≤ F(ξ ′′) and C(ξ ′) = C(ξ ′′) follow. These two relationships indi-
cate C(ξ ′)/F(ξ ′) ≥ C(ξ ′′)/F(ξ ′′). Therefore, the radius ξ minimizing C(ξ)/F(ξ)

can be found from {0, 1/(2k)} ∪ {xvu : u ∈ U , xvu ≤ 1/(2k)}, the size of which is
O(|U |) = O(n).

The approximation performance of our algorithm depends on C(ξ)/F(ξ); if
C(ξ)/F(ξ) ≤ α for any iterations, it achieves 2max{k, α}-approximation. Lemma 1
guarantees that there always exists a radius ξ ∈ [0, 1/(2k)] such that C(ξ)/F(ξ) ≤
2k log(n + 1).

Lemma 1 For any v ∈ U, there exists ξ ∈ [0, 1/(2k)] such that Cv,x,E (ξ) ≤
2k log(n + 1)Fv,x,E (ξ).

Proof Let ξ ∈ (0, 1/(2k)). F(ξ) is differentiable unless ξ = xvu for some vertex
u ∈ V . We let a1, . . . , ak ∈ (0, 1/(2k)) be the numbers such that 0 < a1 < a2 <

· · · < ak < 1/(2k) and F(ξ) is not differentiable for any ξ ∈ {a1, . . . , ak}. For
notational convenience, we let a0 and ak+1 denote 0 and 1/(2k).

Let i ∈ {0, . . . , k}. Note that xe ≥ d ′(e, v) − d(e, v) holds because, if u ∈
argminu∈e xvu and u′ ∈ argmaxu′∈e xvu′ (i.e., xvu = d(e, v) and xvu′ = d ′(e, v)),
then xe ≥ xuu′ ≥ d ′(e, v)−d(e, v), where the former inequality follows from (1) and
the latter one follows from (3). Hence we have

d

dξ
F(ξ) =

∑

e∈E+∩δB(ξ)

w(e)
xe

d ′(e, v) − d(e, v)
≥ C(ξ)

for any ξ ∈ (ai , ai+1).
For notational convenience, we let ε = 2k log(n + 1). To prove the lemma, we

derive a contradiction under an assumption that C(ξ) > εF(ξ) holds for all ξ ∈
[0, 1/(2k)]. From d

dξ
F(ξ) > C(ξ) and C(ξ) > εF(ξ), we have d

dξ
F(ξ) > εF(ξ) for

all ξ ∈ (ai , ai+1). This indicates that

∫ F(ai+1)

F(ai)

1

F(ξ)
dF(ξ) >

∫ ai+1

ai
ε = ε(ai+1 − ai).

Simultaneously, the left-hand side of this inequality is

∫ F(ai+1)

F(ai)

1

F(ξ)
dF(ξ) = log F (ai+1) − log F(ai).

123

Journal of Combinatorial Optimization (2019) 37:1312–1326 1321

Therefore, we have

log F (ai+1) − log F(ai) > ε(ai+1 − ai).

Summing up this inequality over i = 0, . . . , k gives

log F

(
1

2k

)
− log F(0) >

ε

2k
.

Weobserve that F(0) = L/n, and F(1/(2k)) ≤ (1+1/n)L . Therefore, ε < 2k log(n+
1) holds, which is a contradiction. ��

Theorem 1 If the radius ξ is defined as in Lemma 1, the approximation factor of
Algorithm 1 is 4k log(n + 1).

Proof For each hyperedge e ∈ E , we define its LP value as w(e)xe if e ∈ E+, and as
w(e)(1 − xe) if e ∈ E−. Notice that each hyperedge is removed from the hypergraph
in some iteration of Algorithm 1. Let E (i) denote the set of hyperedges removed in
an iteration i , and let L(i) denote the total LP value of hyperedges in E (i). We show
that, for each iteration i , the total weight of disagreed hyperedges in E (i) is at most
2k log(n + 1) times L(i) + L/n. This proves the theorem, because

∑
i L

(i) ≤ L , the
number of iterations is at most n, and L is at most the minimum disagreement of all
clusterings.

Suppose that iteration i adds Bx,v,U (ξ) to the output clustering C. A hyperedge e
is removed from the hypergraph in this iteration if and only if e ∩ Bx,v,U (ξ) �= ∅.
A removed hyperedge e disagrees with the output clustering if one of the following
holds: (a) e is negative and e ⊆ Bx,v,U (ξ); (b) e is positive and e ∈ δ(Bx,v,U (ξ); E).

Let e be a negative hyperedge in E (i) that satisfies condition (a). Let r denote the
order of e and, let u1, . . . , ur denote the nodes included in e. Since e is included in
Bx,v,U (ξ) and ξ ≤ 1/(2k), for any i ∈ {1, . . . , r − 1}, xui ui+1 ≤ xvui + xvui+1 ≤ 1/k
holds, where the former inequality follows from (3). By the constraint (2), xe ≤∑r−1

i=1 xvivi+1 ≤ (r − 1)/k ≤ (k − 1)/k holds, and hence w(e)(1 − xe) ≥ w(e)/k.
Therefore, the weight of e is at most k times its LP value.

Notice thatCv,x,E (ξ) is the totalweight of positive hyperedges that satisfy condition
(b). By Lemma 1, Cv,x,E (ξ) ≤ 2k log(n + 1)Fv,x,E (ξ) holds. Note that Fv,x,E (ξ) −
L/n is at most the total LP value of the removed positive hyperedge. Therefore, the
required claim is proven. ��

As mentioned in Sect. 2, for the disagreement minimization on graphs, the best
known approximation factor is O(log n) (Charikar et al. 2005; Demaine et al. 2006),
and the approximation factor of our algorithm matches it up to a constant when the
problem is restricted to graphs. It is an obvious open problem to improve this factor,
even for graphs. It is unique-games hard to obtain a constant-factor approximation
algorithm for graphs (Demaine et al. 2006). Since hypergraphs include graphs, the
same hardness result applied to the hypergraph correlation clustering.

123

1322 Journal of Combinatorial Optimization (2019) 37:1312–1326

5 O(r)-approximation for the coclustering setting

In this section, we consider the coclustering setting. In other words, the node set of the
input hypergraph is the disjoint union of V1, . . . , Vr , the set of hyperedges coincides
with V1 × V2 × · · · × Vr , and each hyperedge is associated with a unit weight. The
task is to find a partition C of

⋃k
i=1 Vi that minimizes |{e ∈ E+ : e ∈ δ(C)}| + |{e ∈

E− : e ∈ E(C)}|.
In our pivoting algorithm for this case, the ordering of nodes used for defining the

constraint (2) is decided by an ordering of V1, . . . , Vr . For each j = 1, . . . , r , let
vi j be the node in Vj ∩ e for a negative hyperedge e ∈ E−. Then, (2) demands that

xe ≤ ∑r−1
i=1 xvivi+1 holds.

Our algorithm chooses the pivoting node v fromU ∩ V1 in a certain way whenever
U ∩ V1 �= ∅, and the radius ξ is set to 1/

√
2(r − 1)(2r − 1). When U ∩ V1 = ∅,

the clustering of the remaining nodes in U makes no effect on the objective value of
the solution because no hyperedge remains in the hypergraph. Hence the algorithm
stops the iterations and terminates after adding an arbitrary clustering of the remaining
nodes to the solution.

To describe the choice of the pivoting node, let us introduce notations. Let 1 be
the indicator function for events; if an even E happens, then 1(E) = 1, and 1(E) = 0
otherwise. In what follows, we rewrite the radius ξ as 1/θ for notational convenience,
and assume that θ is a fixed parameter; later, we show that θ = √

2(r − 1)(2r − 1)
minimizes the approximation factor. In each iteration, for a nodev ∈ U and a remaining
hyperedge e, we define two costs Lv(e) and Av(e) as follows:

Lv(e) =
{
xe · 1(B(v, 1/θ) ∩ e �= ∅) if e ∈ E+,

(1 − xe) · 1(B(v, 1/θ) ∩ e �= ∅) if e ∈ E−,

Av(e) =
{
1(B(v, 1/θ) ∩ e �=∅ �=e\B(v, 1/θ)) if e ∈ E+,

1(e ⊆ B(v, 1/θ)) if e ∈ E−.

If v is chosen as a pivoting node in this iteration, the cost of the LP solution is decreased
by

∑
e∈E+∪E− Lv(e), and the cost of the solution is increased by

∑
e∈E+∪E− Av(e).

In our algorithm, in each iteration, we choose a node v ∈ V1 ∩ U minimizing∑
e∈E+∪E− Av(e)/

∑
e∈E+∪E− Lv(e) as the pivoting node.

If the pivoting node v satisfies
∑

e∈E+∪E− Av(e)/
∑

e∈E+∪E− Lv(e) ≤ α for
some α ≥ 1 in each iteration, then it can be proven that the algorithm achieves
α-approximation. Below, we prove that the condition is satisfied with

α = 2r − 2√
2(r − 1)(2r − 1) − 2r + 2

− 2r − 1√
2(r − 1)(2r − 1) − 2r + 1

= 2
√
2(r − 1)(2r − 1) + 4r − 3 (5)

when θ = √
2(r − 1)(2r − 1). Indeed, we prove that

∑

v∈V1∩U

∑

e∈E+∪E−
Av(e) ≤ α

∑

v∈V1∩U

∑

e∈E+∪E−
Lv(e) (6)

123

Journal of Combinatorial Optimization (2019) 37:1312–1326 1323

holds with α satisfying (5). Notice that this implies that the node chosen as the pivoting
node satisfies the required condition.

In the rest of this section, we prove (6) under an assumption thatU = V ; ifU ⊂ V ,
(6) is proven by applying the following discussion to the sub-hypergraph induced by
U . First, we bound

∑
v∈V1

∑
e∈E− Av(e) in the following lemma.

Lemma 2
∑

v∈V1
∑

e∈E− Av(e) ≤ θ
θ−2r+2

∑
v∈V1

∑
e∈E− Lv(e).

Proof Let e = i1i2 · · · ir ∈ E−. Av(e) = 1 whenever e ⊆ B(v, 1/θ). In this case,
xi j i j+1 ≤ 1/θ holds for all j = 1, . . . , r − 1, which indicates x(e) ≤ ∑r−1

j=1 xi j i j+1 ≤
xvi1 + 2

∑r−1
j=2 xvi j + xvir ≤ 2(r − 1)/θ . This means that Lv(e) = 1 − xe ≥ (1 −

2(r − 1)/θ) · Av(e) in this case. The same inequality trivially holds when Av(e) = 0.
Therefore,

∑
v∈V1

∑
e∈E− Av(e) ≤ θ

θ−2r+2

∑
v∈V1

∑
e∈E− Lv(e). ��

Next, we bound
∑

v∈V1
∑

e∈E+ Av(e). We introduce a parameter β that satisfies
0 ≤ β ≤ 1/θ . Let us remark that 1 − 1/θ − (r − 1)β ≥ 0 holds because 1/θ ≤ (1 −
1/θ)/(r−1) follows from θ ≥ 2r−2 ≥ r .Wefirst bound

∑
v∈V1

∑
e∈E+:x(e)≥β Av(e).

Lemma 3
∑

v∈V1
∑

e∈E+:x(e)≥β Av(e) ≤ 1
β

∑
v∈V1

∑
e∈E+ Lv(e).

Proof Let e ∈ E+ such that Av(e) = 1. Then Lv(e) = xe. If x(e) ≥ β, this means
that βAv(e) ≤ Lv(e) holds. ��
Lemma 4

∑
v∈V1

∑
e∈E+:x(e)<β Av(e) ≤ θ

1−θβ

∑
v∈V1

∑
e∈E+∪E− Lv(e).

Proof Let e = {i1 · · · ir } ∈ E+ such that Av(e) = 1 and x(e) < β. Av(e) = 1
indicates that e ∩ B(v, 1/θ) �= ∅ �= e\B(v, 1/θ). In other words, there exist s, t ∈
{i1, . . . , ir } such that xvs ≤ 1/θ < xvt . Without loss of generality, let i1 ∈ V1. Let
e′ = vi2 · · · ir (e = e′ when v = i1, and the following discussion holds even in
this case). We bound Av(e) by Li1(e

′). Since xi1i2 ≤ x(e) < β ≤ 1/θ , we have
e′ ∩ B(i1, 1/θ) �= ∅, indicating that Li1(e

′) = xe′ if e′ ∈ E+ and Li1(e
′) = 1 − xe′ if

e′ ∈ E−.
We first consider the case of e′ ∈ E+. Since r ≥ 3, there exists at least one node in

{i2, . . . , ir } distinct from t . Without loss of generality, let i2 be such a node (if i2 = t ,
exchange the subscripts of i2 and i3). Then, Li1(e

′) = xe′ ≥ xvi2 ≥ xvt − xti2 >

1/θ − β, where the last inequality follows from xvt > 1/θ and xti2 ≤ xe ≤ β.
Next, we consider the case of e′ ∈ E−. In this case, we assume that {i j } = e ∩ Vj

for each j = 2, . . . , r , and hence the constraint (2) corresponding to e′ demands that
xe′ ≤ xvi2 + ∑r−1

j=2 xi j i j+1 holds. The second term xvi2 in the right-hand side of this
inequality is bounded as xvi2 ≤ xvs + xsi2 by (3). Recall that xvs ≤ 1/θ holds by the
definition of s. Moreover, xsi2 ≤ x(e) ≤ β holds because both s and i2 are included
in e and the inequality follows from (1) if s �= i2 (the inequality is immediate if
s = i2). Thus, we have xvi2 ≤ 1/θ + β. Moreover, for any j ∈ {2, . . . , r − 1}, we
have xi j i j+1 ≤ β. Therefore, we have xe′ ≤ 1/θ + (r −1)β. Then, Li1(e

′) = 1− xe′ ≥
1− 1/θ − (r − 1)β holds. We note that 1− 1/θ − (r − 1)β ≥ 1/θ − β follows from
β ≤ 1/θ and θ ≥ 2r − 2 ≥ r .

123

1324 Journal of Combinatorial Optimization (2019) 37:1312–1326

Summing up, in either case, Li1(e
′) ≥ 1/θ − β holds. Hence, Li1(e

′) can be used
to bound Av(e). Let us notice that Li1(e

′) is not used for bounding more than one pair
of v and e because (i1, e′) is uniquely determined from (v, e). Therefore, we have

∑

v∈V1

∑

e∈E+:x(e)<β

Av(e) =
∑

v∈V1

∑

e∈E+:x(e)<β

1(Av(e) = 1)

≤ θ

1 − θβ

∑

v∈V1

∑

e∈E+:x(e)<β

Li1(e
′)

≤ θ

1 − θβ

∑

i1∈V1

∑

e′∈E+∪E−
Li1(e

′).

��

From Lemmas 2, 3, and 4, we obtain the following inequality:

∑

v∈V1

∑

e∈E+∪E−
Av(e) ≤

(
max

{
θ

θ − 2r + 2
,
1

β

}
+ θ

1 − θβ

) ∑

v∈V1

∑

e∈E+∪E−
Lv(e).

Hence, (6) is satisfied when α is the minimum value of max {θ/(θ − 2r + 2), 1/β} +
θ/(1 − θβ) subject to θ ≥ 2r − 2 and 0 ≤ β ≤ 1/θ . This minimum value is
equal to the right-hand side of (5), which is attained by θ = √

2(r − 1)(2r − 1) and
β = 1 − √

2(r − 1)/(2r − 1).

Theorem 2 If ξ = 1/
√
2(r − 1)(2r − 1) and the pivoting node v is the one in U ∩ V1

minimizing
∑

e∈E+∪E− Av(e)/
∑

e∈E+∪E− Lv(e), then the approximation factor of

Algorithm 1 is 2
√
2(r − 1)(2r − 1) + 4r − 3 for the coclustering setting.

6 Conclusion

We considered the hypergraph correlation clustering, and gave two approximation
guarantees for the LP-based pivoting algorithms. One is an O(k log n)-approximation
guarantee, and the other is an O(r)-approximation guarantee. In practice, the former
guarantee is more useful because it deals with arbitrary weights while the latter is
restricted to coclustering setting. Nevertheless, the latter guarantee is interesting in
relationship with previous studies on the disagreement minimization with bipartite
graphs (Ailon et al. 2012; Amit 2004; Chawla et al. 2015).

Funding Funding was provided by Japan Society for the Promotion of Science (Grant No. JP17K00040).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

Journal of Combinatorial Optimization (2019) 37:1312–1326 1325

References

Ailon N, Avigdor-Elgrabli N, Liberty E, van Zuylen A (2012) Improved approximation algorithms for
bipartite correlation clustering. SIAM J Comput 41(5):1110–1121

Amit N (2004) The bicluster graph editing problem. Master’s thesis, Tel Aviv University
Bansal N, Blum A, Chawla S (2004) Correlation clustering. Mach Learn 56(1–3):89–113
Ben-DorA, Shamir R, Yakhini Z (1999) Clustering gene expression patterns. J Comput Biol 6(3/4):281–297
BissonG,Hussain SF (2008) Chi-sim: a new similaritymeasure for the co-clustering task. In: Proceedings of

the seventh international conference on machine learning and applications, ICMLA 2008, pp 211–217
Charikar M, Guruswami V, Wirth A (2005) Clustering with qualitative information. J Comput Syst Sci

71(3):360–383
Chawla S, Krauthgamer R, Kumar R, Rabani Y, Sivakumar D (2006) On the hardness of approximating

multicut and sparsest-cut. Comput Complex 15(2):94–114
Chawla S, Makarychev K, Schramm T, Yaroslavtsev G (2015) Near optimal LP rounding algorithm for

correlation clustering on complete and complete k-partite graphs. In: Proceedings of the forty-seventh
annual ACM on symposium on theory of computing, STOC 2015, pp 219–228

Chen X, Ritter A, Gupta A, Mitchell TM (2015) Sense discovery via co-clustering on images and text.
In: Proceedings of IEEE conference on computer vision and pattern recognition, CVPR 2015, pp
5298–5306

Cheng Y, Church GM (2000) Biclustering of expression data. In: Proceedings of the eighth international
conference on intelligent systems for molecular biology, pp 93–103

Cohen WW, Richman J (2002) Learning to match and cluster large high-dimensional data sets for data
integration. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge
discovery and data mining, pp 475–480

Demaine ED, Emanuel D, Fiat A, Immorlica N (2006) Correlation clustering in general weighted graphs.
Theor Comput Sci 361(2–3):172–187

Dhillon IS (2001) Co-clustering documents and words using bipartite spectral graph partitioning. In: Pro-
ceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data
mining, pp 269–274

Dhillon IS, Mallela S, Modha DS (2003) Information-theoretic co-clustering. In: Proceedings of the ninth
ACM SIGKDD international conference on knowledge discovery and data mining, pp 89–98

Filkov V, Skiena S (2003) Integrating microarray data by consensus clustering. In: Proceedings of the 15th
IEEE international conference on tools with artificial intelligence, pp 418–425

Hartigan JA (1972) Direct clustering of a data matrix. J Am Stat Assoc 67(337):123–129
Hatano D, Fukunaga T, Kawarabayashi K (2017) Scalable algorithm for higher-order co-clustering via

random sampling. In: Proceedings of the thirty-first AAAI conference on artificial intelligence, 4–9
Feb 2017, San Francisco, California, USA, pp 1992–1999

Hussain SF, Bisson G, Grimal C (2010) An improved co-similarity measure for document clustering. In:
Proceedings of the ninth international conference onmachine learning and applications, ICMLA2010,
pp 190–197

Kappes JH, Speth M, Reinelt G, Schnörr C (2016) Higher-order segmentation via multicuts. Comput Vis
Image Underst 143:104–119

Kim S, Nowozin S, Kohli P, Yoo CD (2011) Higher-order correlation clustering for image segmentation.
In: Advances in neural information processing systems 24: proceedings of the 25th annual conference
on neural information processing systems 2011, pp 1530–1538

Kim S, Yoo CD, Nowozin S, Kohli P (2014) Image segmentation usinghigher-order correlation clustering.
IEEE Trans Pattern Anal Mach Intell 36(9):1761–1774

Madeira SC, Teixeira MC, Sá-Correia I, Oliveira AL (2010) Identification of regulatory modules in time
series gene expression data using a linear time biclustering algorithm. IEEE ACM Trans Comput Biol
Bioinform 7(1):153–165

McCallum A, Wellner B (2003) Toward conditional models of identity uncertainty with application to
proper noun coreference. In: Proceedings of IJCAI-03 workshop on information integration on the
web, IIWeb-03, pp 79–84

Papalexakis EE, Sidiropoulos ND, Bro R (2013) From K-means to higher-way co-clustering: multilinear
decomposition with sparse latent factors. IEEE Trans Signal Process 61(2):493–506

Peng W, Li T (2011) Temporal relation co-clustering on directional social network and author-topic evolu-
tion. Knowl Inf Syst 26(3):467–486

123

1326 Journal of Combinatorial Optimization (2019) 37:1312–1326

ShanH, BanerjeeA (2008) Bayesian co-clustering. In: Proceedings of the 8th IEEE international conference
on data mining, ICDM 2008, pp 530–539

Zha H, He X, Ding CHQ, Gu M, Simon HD (2001) Bipartite graph partitioning and data clustering.
In: Proceedings of the 2001 ACM CIKM international conference on information and knowledge
management, pp 25–32

Zhao L, Zaki MJ (2005) Tricluster: an effective algorithm for mining coherent clusters in 3D microarray
data. In: Proceedings of the ACM SIGMOD international conference on management of data, pp
694–705

Zhu Y, Yang H, He J (2015) Co-clustering based dual prediction for cargo pricing optimization. In: Proceed-
ings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining,
pp 1583–1592

123

	LP-based pivoting algorithm for higher-order correlation clustering
	Abstract
	1 Introduction
	1.1 Problem formulation
	1.2 Motivation
	1.3 Contributions
	1.4 Organization

	2 Related work
	2.1 Correlation clustering
	2.2 Coclustering

	3 Preliminaries
	3.1 Notations
	3.2 Reduction to the graph correlation clustering
	3.3 Overview of our algorithms

	4 O(klogn)-approximation for general hypergraphs
	5 O(r)-approximation for the coclustering setting
	6 Conclusion
	Funding
	References

