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Abstract. The Subset-Sums Ratio problem (SSR) is an optimization
problem in which, given a set of integers, the goal is to find two subsets
such that the ratio of their sums is as close to 1 as possible. In this paper
we develop a new FPTAS for the SSR problem which builds on tech-
niques proposed in [D. Nanongkai, Simple FPTAS for the subset-sums
ratio problem, Inf. Proc. Lett. 113 (2013)]. One of the key improvements
of our scheme is the use of a dynamic programming table in which one
dimension represents the difference of the sums of the two subsets. This
idea, together with a careful choice of a scaling parameter, yields an FP-
TAS that is several orders of magnitude faster than the best currently
known scheme of [C. Bazgan, M. Santha, Z. Tuza, Efficient approxima-
tion algorithms for the Subset-Sums Equality problem, J. Comp. System
Sci. 64 (2) (2002)].
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1 Introduction

We study the optimization version of the following NP-hard decision problem
which given a set of integers asks for two subsets of equal sum (but, in contrast
to the Partition problem, the two subsets do not have to form a partition of the
given set):

Equal Sum Subsets problem (ESS). Given a set A = {a1, . . . , an} of n
positive integers, are there two nonempty and disjoint sets S1, S2 ⊆ {1, . . . , n}
such that

∑
i∈S1

ai =
∑
j∈S2

aj?

Our motivation to study the ESS problem and its optimization version comes
from the fact that it is a fundamental problem closely related to problems ap-
pearing in many scientific areas. Some examples are the Partial Digest problem,
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which comes from molecular biology (see [2,3]), the problem of allocating in-
dividual goods (see [8]), tournament construction (see [7]), and a variation of
the Subset Sum problem, namely the Multiple Integrated Sets SSP, which finds
applications in the field of cryptography (see [10]).

The ESS problem has been proven NP-hard by Woeginger and Yu in [11] and
several of its variations have been proven NP-hard by Cieliebak et al. in [4,5,6].
The corresponding optimization problem is:

Subset-Sums Ratio problem (SSR). Given a set A = {a1, . . . , an} of n
positive integers, find two nonempty and disjoint sets S1, S2 ⊆ {1, . . . , n} that
minimize the ratio

max{
∑
i∈S1

ai,
∑
j∈S2

aj}
min{

∑
i∈S1

ai,
∑
j∈S2

aj}
.

The SSR problem was introduced by Woeginger and Yu [11]. In the same work
they present an 1.324 approximation algorithm which runs in O(n log n) time.
The SSR problem received its first FPTAS by Bazgan et al. in [1], which ap-
proximates the optimal solution in time no less than O(n5/ε3); to the best of
our knowledge this is still the faster scheme proposed for SSR. A second, simpler
but slower, FPTAS was proposed by Nanongkai in [9].

The FPTAS we present in this paper makes use of some ideas proposed
in [9], strengthened by certain key improvements that lead to a considerable
acceleration: our algorithm approximates the optimal solution in O(n4/ε) time,
several orders of magnitude faster than the best currently known scheme of [1].

2 Preliminaries

We will first define two functions that will allow us to simplify several of the
expressions that we will need throughout the paper.

Definition 1 (Ratio of two subsets). Given a set A = {a1, . . . , an} of n pos-
itive integers and two sets S1, S2 ⊆ {1, . . . , n} we define R(S1, S2, A) as follows:

R(S1, S2, A) =


∑

i∈S1
ai∑

j∈S2
aj

if S1 ∪ S2 6= ∅,

+∞ otherwise.

Definition 2 (Max ratio of two subsets). Given a set A = {a1, . . . , an} of
n positive integers and two sets S1, S2 ⊆ {1, . . . , n} we define MR(S1, S2, A) as
follows:

MR(S1, S2, A) = max{R(S1, S2, A),R(S2, S1, A)} .

Note that, in cases where at least one of the sets is empty, the Max Ratio function
will return∞. Using these functions, the SSR problem can be rephrased as shown
below.
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Subset-Sums Ratio problem (SSR) (equivalent definition). Given a set
A = {a1, . . . , an} of n positive integers, find two disjoint sets S1, S2 ⊆ {1, . . . , n}
such that the value MR(S1, S2, A) is minimized.

In addition, from now on, whenever we have a set A = {a1, . . . , an} we will
assume that 0 < a1 < a2 < . . . < an (clearly, if the input contains two equal
numbers then the problem has a trivial solution).

The FPTAS proposed by Nanonghai [9] approximates the SSR problem by
solving a restricted version.

Restricted Subset-Sums Ratio problem. Given a set A = {a1, . . . , an} of
n positive integers and two integers 1 ≤ p < q ≤ n, find two disjoint sets S1, S2

⊆ {1, . . . , n} such that {maxS1,maxS2} = {p, q} and the value MR(S1, S2, A)
is minimized.

Inspired by this idea, we define a less restricted version. The new problem re-
quires one additional input integer, instead of two, which represents the smallest
of the two maximum elements of the sought optimal solution.

Semi-Restricted Subset-Sums Ratio problem. Given a set A = {a1, . . . ,
an} of n positive integers and an integer 1 ≤ p < n, find two disjoint sets S1,
S2 ⊆ {1, . . . , n} such that maxS1 = p < max S2 and the value MR(S1, S2, A)
is minimized.

Let A = {a1, . . . , an} be a set of n positive integers and p ∈ {1, . . . , n − 1}.
Observe that, if S∗1 , S∗2 is the optimal solution of SSR problem of instance A
and Sp1 , Sp2 the optimal solution of Semi-Restricted SSR problem of instance A,
p then:

MR(S∗1 , S
∗
2 , A) = min

p∈{1,...,n−1}
MR(Sp1 , S

p
2 , A) .

Thus, we can find the optimal solution of SSR problem by solving the SSR
Semi-Restricted SSR problem for all p ∈ {1, . . . , n− 1}.

3 Pseudo-polynomial time algorithm for Semi-Restricted
SSR problem

Let the A, p be an instance of the Semi-Restricted SSR problem where A =
{a1, . . . , an} and 1 ≤ p < n. For solving the problem we have to check two cases
for the maximum element of the optimal solution. Let S∗1 , S∗2 be the optimal
solution of this instance and maxS∗2 = q. We define B = {ai | i > p, ai <∑p
j=1 aj} and C = {ai | ai ≥

∑p
j=1 aj} from which we have that either aq ∈ B

or aq ∈ C. Note that A = {a1, . . . , ap} ∪B ∪ C.

Case 1 (aq ∈ C). It is easy to see that if aq ∈ C, then aq = minC and
the optimal solution will be (S1 = {1, . . . , p}, S2 = {q}). We describe below a
function that returns this pair of sets, thus computing the optimal solution if
Case 1 holds.
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Definition 3 (Case 1 solution). Given a set A = {a1, . . . , an} of n positive
integers and an integer 1 ≤ p < n we define the function SOL1(A, p) as follows:

SOL1(A, p) =

{
({1, . . . , p}, {minC}) if C 6= ∅,
(∅, ∅) otherwise,

where C = {ai | ai >
∑p
j=1 aj}.

Case 2 (aq ∈ B). This second case is not trivial. Here, we define an integer
m = max{j | aj ∈ A r C} and a matrix T , where T [i, d], 0 ≤ i ≤ m,−2 ·∑p
k=1 ak ≤ d ≤

∑p
k=1 ak, is a quadruple to be defined below. A cell T [i, d] is

nonempty if there exist two disjoint sets S1, S2 with sums sum1, sum2 such
that sum1 − sum2 = d, maxS1 = p, and S1 ∪ S2 ⊆ {1, . . . , i} ∪ {p}; if i > p, we
require in addition that p < maxS2. In such a case, cell T [i, d] consists of the
two sets S1, S2, and two integers max(S1∪S2) and sum1+sum2. A crucial point
in our algorithm is that if there exist more than one pairs of sets which meet
the required conditions, we keep the one that maximize the value sum1 + sum2;
for convenience, we make use of a function to check this property and select
the appropriate sets. The algorithm for this case (Algorithm 1) finally returns
the pair S1, S2 which, among those that appear in some T [m, d] 6= ∅, has the
smallest ratio MR(S1, S2, A).

Definition 4 (Larger total sum tuple selection). Given two tuples v1 =
(S1, S2, q, x) and v2 = (S′1, S

′
2, q
′, x′) we define the function LT ST (v1,v2) as

follows:

LT ST (v1,v2) =

{
v2 if v1 = ∅ or x′ > x,

v1 otherwise .

Algorithm 1 Case 2 solution [SOL2(A, p) function]

Input: a strictly sorted set A = {a1, . . . , an}, ai ∈ Z+, and an integer p, 1 ≤ p < n.
Output: the sets of an optimal solution for Case 2.
1: S′1 ← ∅, S′2 ← ∅
2: Q←

∑p
i=1 ai, m← max{i | ai < Q}

3: if m > p then
4: for all i ∈ {0, . . . ,m}, d ∈ {−2 ·Q, . . . , Q} do
5: T [i, d]← ∅
6: end for
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7: T [0, ap]← ({p}, ∅, p, ap) . p ∈ S1 by problem definition
8: for i← 1 to m do
9: if i < p then

10: for all T [i− 1, d] 6= ∅ do
11: (S1, S2, q, x)← T [i− 1, d]
12: T [i, d]← LT ST (T [i, d], T [i− 1, d])
13: T [i, d+ ai]← LT ST (T [i, d+ ai], (S1 ∪ {i}, S2, q, x+ ai))
14: T [i, d− ai]← LT ST (T [i, d− ai], (S1, S2 ∪ {i}, q, x+ ai))
15: end for
16: else if i = p then . p is already placed in S1

17: for all T [i− 1, d] 6= ∅ do
18: T [i, d]← T [i− 1, d]
19: end for
20: else
21: for all T [i− 1, d] 6= ∅ do
22: (S1, S2, q, x)← T [i− 1, d]
23: if i > p+ 1 then
24: T [i, d]← LT ST (T [i, d], T [i− 1, d])
25: end if
26: if d− ai ≥ −2 ·Q then
27: T [i, d− ai]← LT ST (T [i, d− ai], (S1, S2 ∪ {i}, i, x+ ai))
28: end if
29: end for
30: for all T [p, d] 6= ∅ do
31: (S1, S2, q, x)← T [p, d]
32: if d− ai ≥ −2 ·Q then
33: T [i, d− ai]← LT ST (T [i, d− ai], (S1, S2 ∪ {i}, i, x+ ai))
34: end if
35: end for
36: end if
37: end for
38: for d← −2 ·Q to Q do
39: (S1, S2, q, x)← T [m, d]
40: if MR(S1, S2, A) <MR(S′1, S

′
2, A) then

41: S′1 ← S1, S′2 ← S2

42: end if
43: end for
44: end if
45: return S′1, S′2

We next present the complete algorithm for Semi-Restricted SSR (Algorithm 2)
which simply returns the best among the two solutions obtained by solving the
two cases. Algorithm 2 runs in time polynomial in n and Q (where Q =

∑p
i=1 ai),

therefore it is a pseudo-polynomial time algorithm. More precisely, by using
appropriate data structures we can store the sets in the matrix cells in O(1) time
(and space) per cell, which implies that the time complexity of the algorithm is
O(n ·Q).
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Algorithm 2 Exact solution for Semi-Restricted SSR [SOLex(A, p) function]

Input: a strictly sorted set A = {a1, . . . , an}, ai ∈ Z+, and an integer p, 1 ≤ p < n.
Output: the sets of an optimal solution of Semi-Restricted SSR.
1: (S1, S2)← SOL1(A, p)
2: (S′1, S

′
2)← SOL2(A, p)

3: if MR(S1, S2, A) ≤MR(S′1, S
′
2, A) then

4: return S1, S2

5: else
6: return S′1, S′2
7: end if

4 Correctness of the Semi-Restricted SSR algorithm

In this section we will prove that Algorithm 2 solves exactly the Semi-Restricted
SSR problem. Let S∗1 , S∗2 be the sets of an optimal solution for input (A =
{a1, . . . , an}, p).

Starting with the case 1 (where maxS∗2 ∈ {i | ai ≥
∑p
j=1 aj}), is easy to see

that:

Observation 1. The sets S∗1 = {1, . . . , p}, S∗2 = {min{i | ai ≥
∑p
j=1 aj}} give

the optimal ratio.

Those are the sets which the function SOL1(A, p) returns.
For the case 2 (where maxS∗2 ∈ {i | i > p, ai <

∑p
j=1 aj}) we have to show

that the cell T [m, d] (where d =
∑
i∈S∗1

ai −
∑
j∈S∗2

aj) contains two sets S1, S2

with ratio equal to optimum. Before that we will show a lemma for the sums of
the sets of the optimal solution.

Lemma 1. Let Q =
∑p
i=1 ai then we have

∑
i∈S∗1

ai ≤ Q and
∑
i∈S∗2

ai < 2 ·Q.

Proof. Observe that maxS∗1 = p. This gives us
∑
i∈S∗1

ai ≤
∑p
i=1 ai so it remains

to prove
∑
i∈S∗2

ai < 2 ·Q. Suppose that
∑
i∈S∗2

ai ≥ 2 ·Q. We can define the set

S2 as S∗2 r {minS∗2}. Note that, for all i ∈ S∗2 , we have that the ai <
∑p
i=1 ai.

Because of that,

∑
i∈S∗1

ai ≤
p∑
i=1

ai <
∑
i∈S2

ai <
∑
i∈S∗2

ai

which means that the pair (S∗1 , S2) is a feasible solution with smaller max ratio
than the optimal, which is a contradiction.

The next two lemmas describe same conditions which guarantee that the cells
of T are nonempty. Furthermore, they secure that we will store the appropriate
sets to return an optimal solution.
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Lemma 2. If there exist two disjoint sets (S1, S2) such that

– maxS2 < maxS1 = p
–

∑
i∈S1

ai −
∑
j∈S2

aj = d

then T [i, d] 6= ∅ for all p ≥ i ≥ max(S1 ∪ S2 r {p}). Furthermore for the sets
(S′1, S

′
2) which are stored in T [i, d] it holds that∑

i∈S′1

ai +
∑
j∈S′2

aj ≥
∑
i∈S1

ai +
∑
j∈S2

aj .

Proof. Note that, for all pairs (S1, S2) which meet the conditions, their sums
are smaller than Q because max(S1 ∪ S2) = p so for the value d =

∑
i∈S1

ai −∑
j∈S2

aj we have
−Q ≤ d ≤ Q .

The same clearly holds for every pair of subsets of S1, S2.
We will prove the lemma by induction on q = max(S1 ∪ S2 r {p}). For

convenience if S1 ∪ S2 r {p} = ∅ we let q = 0.
• q = 0 (base case).
The only pair which meets the conditions for q = 0 is the ({p}, ∅). Observe that
cell T [0, ap] is nonempty by the construction of the table and the same holds
for T [i, ap], 1 ≤ i ≤ p (by line 12). In this case the pair of sets which meets
the conditions and the pair which is stored are exactly the same, so the lemma
statement is obviously true.
• Assume that the lemma statement holds for q = k ≤ p− 1; we will prove it for
q = k + 1 as well.
Let (S1, S2) be a pair of sets which meets the conditions. Either q ∈ S1 or
q ∈ S2; therefore either (S1 r {q}, S2) or (S1, S2 r {q}) (respectively) meets the
conditions. By the inductive hypothesis, we know that

– either T [q − 1, d− aq] or T [q − 1, d+ aq] (resp.) is nonempty
– in any of the above cases for the stored pair (S′1, S

′
2) it holds that:∑

i∈S′1
ai +

∑
j∈S′2

aj ≥
∑
i∈S1

ai +
∑
j∈S2

aj − aq

In particular, if (S1 r {q}, S2) meets the conditions then T [q − 1, d − aq] is
nonempty. In line 13 q is added to the first set and therefore T [q, d] is nonempty
and the stored pair is (S′1∪{q}, S′2) (or some other with larger total sum). Hence,
the total sum of the pair in T [q, d] is at least∑

i∈S′1

ai +
∑
j∈S′2

aj + aq ≥
∑
i∈S1

ai +
∑
j∈S2

aj .

If on the other hand (S1, S2 r {q}) is the pair that meets the conditions then
T [q−1, d+aq] is nonempty. In line 14 q is added to the second set and therefore
T [q, d] is nonempty and the stored pair is (S′1, S

′
2 ∪ {q}) (or other with larger

total sum). Hence, the total sum of the pair in T [q, d] is at least∑
i∈S′1

ai +
∑
j∈S′2

aj + aq ≥
∑
i∈S1

ai +
∑
j∈S2

aj .
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The same holds for cells T [i, d] with q < i ≤ p (due to line 12).
This concludes the proof.

A similar lemma can be proved for sets with maximum element index greater
than p.

Lemma 3. If there exist two disjoint sets (S1, S2) such that

– maxS2 = q > p = maxS1

–
∑
i∈S1

ai ≤ Q,
∑
j∈S2

aj < 2 ·Q
–

∑
i∈S1

ai −
∑
j∈S2

aj = d

then T [i, d] 6= ∅ for all i ≥ q. Furthermore for the sets (S′1, S
′
2) which are stored

in T [i, d] it holds that∑
i∈S′1

ai +
∑
j∈S′2

aj ≥
∑
i∈S1

ai +
∑
j∈S2

aj .

Proof. Note that, for all pairs (S1, S2) which meet the conditions, the value
d =

∑
i∈S1

ai −
∑
j∈S2

aj it holds that

−2 ·Q ≤ d ≤ Q .

The same clearly holds for every pair of subsets of S1, S2.
We will prove the lemma by induction. Let (S1, S2) meet the conditions and

q = maxS2.
• q = p+ 1 (base case)
Clearly maxS2 = p+ 1 so the sets (S1, S2 r {p+ 1}) meet the conditions of the
Lemma 2 which gives us that

– T [p, d+ ap+1] is nonempty
– for the stored pair (S′1, S

′
2) it holds that:∑

i∈S′1
ai +

∑
j∈S′2

aj ≥
∑
i∈S1

ai +
∑
j∈S2

aj − ap+1

Having the T [p, d+ap+1] 6= ∅ the algorithm uses it in lines 31-34 and adds p+ 1
to the second (stored) set so, we have that T [p+1, d] is nonempty and the stored
sets have total sum (at least):∑

i∈S′1

ai +
∑
j∈S′2

aj + ap+1 ≥
∑
i∈S1

ai +
∑
j∈S2

aj .

Furthermore, because T [p + 1, d] is nonempty the above hold, additionally, for
all T [i, d], i > p+ 1 (because the condition at line 23 is met, the algorithm fills
those cells). The above conclude the base case.
• Assuming that the lemma statement holds for q = k > p, we will prove it for
q = k + 1.
Here we have to check two cases. Either max(S2 r {q}) > p or not.

Case 1 (max(S2r{q}) > p). The pair of sets (S1, S2r{q}) meets the conditions;
by the inductive hypothesis, we have
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– T [q − 1, d− aq] is nonempty
– for the stored pair (S′1, S

′
2) it holds that:∑

i∈S′1
ai +

∑
j∈S′2

aj ≥
∑
i∈S1

ai +
∑
j∈S2

aj − aq

Having the T [q − 1, d+ ap+1] 6= ∅ the algorithm uses it in line 27 and adds q to
the second (stored) set so we have that T [q, d] is nonempty and the stored sets
have total sum (at least):∑

i∈S′1

ai +
∑
j∈S′2

aj + aq ≥
∑
i∈S1

ai +
∑
j∈S2

aj .

As before, the same holds for the cells T [i, d] with i > p + 1 because the
condition at line 23 is met.

Case 2 (max(S2 r {q}) < p). The sets (S1, S2 r {q}) meets the conditions of
the Lemma 2 (because maxS1 = p) which gives that

– T [p, d+ aq] is nonempty
– for the stored pair (S′1, S

′
2) it holds that:∑

i∈S′1
ai +

∑
j∈S′2

aj ≥
∑
i∈S1

ai +
∑
j∈S2

aj − aq

Having T [p, d + aq] 6= ∅ the algorithm uses it in lines 31-34 and adds q to the
second (stored) set so we have that T [q, d] is nonempty and the stored sets have
total sum (at least):∑

i∈S′1

ai +
∑
j∈S′2

aj + aq ≥
∑
i∈S1

ai +
∑
j∈S2

aj .

Furthermore, because T [q, d] is nonempty the previous hold for all T [i, d], i >
q ≥ p+ 1 (because the condition at line 23 is met).

Now we can prove that, in the second case, the pair of sets which the algorithm
returns and the pair of sets of an optimal solution have the same ratio.

Lemma 4. If (S′1, S
′
2) is the pair of sets that Algorithm 1 returns, then:

MR(S′1, S
′
2, A) =MR(S∗1 , S

∗
2 , A) .

Proof. Let m be the size of the first dimension of the matrix T . Observe that for
all i, p+ 1 ≤ i ≤ m, the sets S1, S2 of the nonempty cells T [i, d] are constructed
(lines 21-35 of Algorithm 1) such that maxS1 = p and i ≥ maxS2 > p. Therefore
the pair (S′1, S

′
2) returned by the algorithm is a feasible solution. We can see

that the sets S∗1 , S∗2 meet the conditions of Lemma 3 (the conditions for the
sums are met because of Lemma 1) which give us that the cell T [m, d] (where
d =

∑
i∈S∗1

ai −
∑
j∈S∗2

aj) is non empty and contains two sets with total sum

non less than
∑
i∈S∗1

ai +
∑
j∈S∗2

aj . Let S1, S2 be the sets which are stored to

the cell T [m, d]. Then we have

MR(S′1, S
′
2, A) ≤MR(S1, S2, A) ≤MR(S∗1 , S

∗
2 , A) (1)

9



where the second inequality is because∑
i∈S∗1

ai −
∑
j∈S∗2

aj =
∑
i∈S1

ai −
∑
j∈S2

aj

and ∑
i∈S∗1

ai +
∑
j∈S∗2

aj ≤
∑
i∈S1

ai +
∑
j∈S2

aj .

By the Eq.1 and because the S∗1 , S∗2 have the smallest Max Ratio we have

MR(S′1, S
′
2, A) =MR(S∗1 , S

∗
2 , A) .

Now, we can write the next theorem, which follows by the previous cases.

Theorem 1. Algorithm 2 returns an optimal solution for Semi-Restricted SSR.

5 FPTAS for Semi-Restricted SSR and SSR

Algorithm 2, which we presented at Section 3, is an exact pseudo-polynomial
time algorithm for the Semi-Restricted SSR problem. In order to derivee a (1+ε)-
approximation algorithm we will define a scaling parameter δ =

ε·ap
3·n which we

will use to make a new set A′ = {a′1, . . . , a′n} with a′i = baiδ c. The approximation
algorithm solves the problem optimally on input (A′, p) and returns the sets of
this exact solution. The ratio of those sets is a (1 + ε)-approximation of the
optimal ratio of the original input.

Algorithm 3 FPTAS for Semi-Restricted SSR [SOLapx(A, p, ε) function]

Input: a strictly sorted set A = {a1, . . . , an}, ai ∈ Z+, an integer p, 1 ≤ p < n, and
an error parameter ε ∈ (0, 1).

Output: the sets of a (1 + ε)-approximation solution for Semi-Restricted SSR.
1: δ ← ε·ap

3·n
2: A′ ← ∅
3: for i← 1 to n do
4: a′i ← baiδ c
5: A′ ← A′ ∪ {a′i}
6: end for
7: (S1, S2)← SOLex(A′, p)
8: return S1, S2

Now, we will prove that the algorithm approximates the optimal solution by
factor (1 + ε). Our proof follows closely the proof of Theorem 2 in [9].

Let SA, SB be the pair of sets returned by Algorithm 3 on input A =
{a1, . . . , an}, p and ε and (S∗1 , S

∗
2 ) be an optimal solution to the problem.

10



Lemma 5. For any S ∈ {SA, SB , S∗1 , S∗2}∑
i∈S

ai − n · δ ≤
∑
i∈S

δ · a′i ≤
∑
i∈S

ai, (2)

n · δ ≤ ε

3
·
∑
i∈S

ai. (3)

Proof. For Eq. (2) notice that for all i ∈ {1, . . . , n} we define a′i = baiδ c. This
gives us

ai
δ
− 1 ≤ a′i ≤

ai
δ
⇒ ai − δ ≤ δ · ai ≤ ai.

In addition, for any S ∈ {SA, SB , S∗1 , S∗2} we have |S| ≤ n, which means that∑
i∈S

ai − n · δ ≤
∑
i∈S

δ · a′i ≤
∑
i∈S

ai.

For the Eq. (3) observe that maxS ≥ p for any S ∈ {SA, SB , S∗1 , S∗2}. By this
observation, we can show the second inequality

n · δ ≤ n · ε · ap
3 · n

≤ ε

3
·
∑
i∈S

ai.

Lemma 6. MR(SA, SB , A) ≤MR(SA, SB , A
′) + ε

3

Proof.

R(SA, SB , A) =

∑
i∈SA

ai∑
j∈SB

aj
≤

∑
i∈SA

δ · a′i + δ · n∑
j∈SB

aj
[by Eq. (2)]

≤
∑
i∈SA

a′i∑
j∈SB

a′j
+

δ · n∑
j∈SB

aj
[by Eq. (2)]

≤MR(SA, SB , A
′) +

ε

3
[by Eq. (3)]

The same way, we have

R(SB , SA, A) ≤MR(SA, SB , A
′) +

ε

3

thus the lemma holds.

Lemma 7. For any ε ∈ (0, 1), MR(S∗1 , S
∗
2 , A

′) ≤ (1 + ε
2 ) · MR(S∗1 , S

∗
2 , A).

11



Proof. If R(S∗1 , S
∗
2 , A

′) ≥ 1, let (S1, S2) = (S∗1 , S
∗
2 ), otherwise (S1, S2) = (S∗2 ,

S∗1 ). That gives us

MR(S∗1 , S
∗
2 , A

′) = R(S1, S2, A
′) =

∑
i∈S1

a′i∑
j∈S2

a′j

≤
∑
i∈S1

ai∑
j∈S2

aj − n · δ
[by Eq. (2)]

=

∑
i∈S2

ai∑
j∈S2

aj − n · δ
·
∑
i∈S1

ai∑
j∈S2

aj

= (1 +
n · δ∑

j∈S2
aj − n · δ

) ·
∑
i∈S1

ai∑
j∈S2

aj
.

Because S2 ∈ {S∗1 , S∗2} by Eq. (3) it follows that

MR(S∗1 , S
∗
2 , A

′) ≤ (1 +
1

3
ε − 1

) ·
∑
i∈S1

ai∑
j∈S2

aj

= (1 +
ε

3− ε
) ·

∑
i∈S1

ai∑
j∈S2

aj

≤ (1 +
ε

2
) ·

∑
i∈S1

ai∑
j∈S2

aj
[because ε ∈ (0, 1)]

≤ (1 +
ε

2
) · MR(S∗1 , S

∗
2 , A).

This concludes the proof.

Now we can prove that Algorithm 3 is a (1 + ε) approximation algorithm.

Theorem 2. Let SA, SB be the pair of sets returned by Algorithm 3 on input
(A = {a1, . . . , an}, p, ε) and S∗1 , S∗2 be an optimal solution, then:

MR(SA, SB , A) ≤ (1 + ε) · MR(S∗1 , S
∗
2 , A).

Proof. The theorem follows from a sequence of inequalities:

MR(SB , SA, A) ≤MR(SA, SB , A
′) +

ε

3
[by Lemma 6]

≤MR(S∗1 , S
∗
2 , A

′) +
ε

3

≤ (1 +
ε

2
) · MR(S∗1 , S

∗
2 , A) +

ε

3
[by Lemma 7]

≤ (1 + ε) · MR(S∗1 , S
∗
2 , A).

It remains to show that the complexity of Algorithm 3 isO(poly(n, 1/ε)). Like
we said at 3 the algorithm solves the Semi-Restricted SSR problem in O(n ·Q)

12



(where Q =
∑p
i=1 a

′
i). We have to bound the value of Q. By the definition of a′i

we have,

Q =

p∑
i=1

a′i ≤ n · a′p ≤
n · ap
δ

=
3 · n2

ε

which means that Algorithm 3 runs in O(n3/ε).

Clearly, it suffices to perform n−1 executions of the FPTAS for Semi-Restricted
SSR (Algorithm 3), and pick the best of the returned solutions, in order to
obtain an FPTAS for the (unrestricted) SSR problem. Therefore, we obtain the
following.

Theorem 3. The above described algorithm is an FPTAS for SSR that runs in
O(n4/ε) time.

6 Conclusion

In this paper we provide an FPTAS for the Subset-Sums Ratio (SSR) problem
that is much faster than the best currently known scheme of Bazgan et al. [1].
There are two novel ideas that provide this improvement. The first comes from
observing that in [9] the proof of correctness essentially relies only on the value
of the smallest of the two maximum elements; this led to the idea to use only
that information in order to solve the problem by defining and solving a new
variation which we call Semi-Restricted SSR. A key ingredient in our approx-
imation scheme is the use, in the scaling parameter δ, of a value smaller than
the sums of the sets of both optimal and approximate solutions (which in our
case is the value of the smallest of the two maximum elements). We believe that
this technique can be used in several other partition problems, e.g. such as those
described in [8,10].

The second idea was to use one dimension only, for the difference of the sums
of the two sets, instead of two dimensions, one for each sum. This idea, combined
with the observation that between two pairs of sets with the same difference, the
one with the largest total sum has ratio closer to 1, is the key to obtain an
optimal solution in much less time. It’s interesting to see whether and how this
technique could be used to problems that seek more than two subsets.

A natural open question is whether our techniques can be applied to obtain
approximation results for other variations of the SSR problem [5,6].
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