Skip to main content

A Faster FPTAS for the Subset-Sums Ratio Problem

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10976))

Included in the following conference series:

  • 1540 Accesses

Abstract

The Subset-Sums Ratio problem (SSR) is an optimization problem in which, given a set of integers, the goal is to find two subsets such that the ratio of their sums is as close to 1 as possible. In this paper we develop a new FPTAS for the SSR problem which builds on techniques proposed by Nanongkai (Inf Proc Lett 113, 2013). One of the key improvements of our scheme is the use of a dynamic programming table in which one dimension represents the difference of the sums of the two subsets. This idea, together with a careful choice of a scaling parameter, yields an FPTAS that is several orders of magnitude faster than the best currently known scheme of Bazgan et al. (J Comput Syst Sci 64(2), 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bazgan, C., Santha, M., Tuza, Z.: Efficient approximation algorithms for the subset-sums equality problem. J. Comput. Syst. Sci. 64(2), 160–170 (2002). https://doi.org/10.1006/jcss.2001.1784

    Article  MathSciNet  MATH  Google Scholar 

  2. Cieliebak, M., Eidenbenz, S., Penna, P.: Noisy data make the partial digest problem NP-hard. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS, vol. 2812, pp. 111–123. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39763-2_9

    Chapter  Google Scholar 

  3. Cieliebak, M., Eidenbenz, S.: Measurement errors make the partial digest problem NP-Hard. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 379–390. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24698-5_42

    Chapter  Google Scholar 

  4. Cieliebak, M., Eidenbenz, S., Pagourtzis, A., Schlude, K.: Equal sum subsets: complexity of variations. Technical report 370, ETH Zürich, Department of Computer Science (2002). ftp://ftp.inf.ethz.ch/doc/tech-reports/3xx/370.pdf

  5. Cieliebak, M., Eidenbenz, S., Pagourtzis, A.: Composing equipotent teams. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp. 98–108. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45077-1_10

    Chapter  Google Scholar 

  6. Cieliebak, M., Eidenbenz, S., Pagourtzis, A., Schlude, K.: On the complexity of variations of equal sum subsets. Nord. J. Comput. 14(3), 151–172 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Khan, M.A.: Some problems on graphs and arrangements of convex bodies. Ph.D. thesis, University of Calgary (2017). https://prism.ucalgary.ca/handle/11023/3765

  8. Lipton, R.J., Markakis, E., Mossel, E., Saberi, A.: On approximately fair allocations of indivisible goods. In: Proceedings of the 5th ACM Conference on Electronic Commerce (EC 2004), 17–20 May 2004, New York, NY, USA, pp. 125–131 (2004)

    Google Scholar 

  9. Nanongkai, D.: Simple FPTAS for the subset-sums ratio problem. Inf. Process. Lett. 113(19–21), 750–753 (2013)

    Article  MathSciNet  Google Scholar 

  10. Voloch, N.: MSSP for 2-D sets with unknown parameters and a cryptographic application. Contemp. Eng. Sci. 10(19), 921–931 (2017)

    Article  Google Scholar 

  11. Woeginger, G.J., Yu, Z.: On the equal-subset-sum problem. Inf. Process. Lett. 42(6), 299–302 (1992). https://doi.org/10.1016/0020-0190(92)90226-L

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aris Pagourtzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Melissinos, N., Pagourtzis, A. (2018). A Faster FPTAS for the Subset-Sums Ratio Problem. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94776-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics