
Heuristic algorithms for the min-max edge
2-coloring problem

Radu Stefan Mincu1 and Alexandru Popa1,2,?

1 Department of Computer Science, University of Bucharest
2 National Institute for Research and Development in Informatics

E-mail: mincu.radu@fmi.unibuc.ro, alexandru.popa@fmi.unibuc.ro

Abstract. In multi-channel Wireless Mesh Networks (WMN), each
node is able to use multiple non-overlapping frequency channels. Rani-
wala et al. (MC2R 2004, INFOCOM 2005) propose and study several
such architectures in which a computer can have multiple network inter-
face cards. These architectures are modeled as a graph problem named
maximum edge q-coloring and studied in several papers by Feng et. al
(TAMC 2007), Adamaszek and Popa (ISAAC 2010, JDA 2016). Later
on Larjomaa and Popa (IWOCA 2014, JGAA 2015) define and study an
alternative variant, named the min-max edge q-coloring.
The above mentioned graph problems, namely the maximum edge
q-coloring and the min-max edge q-coloring are studied mainly from
the theoretical perspective. In this paper, we study the min-max edge
2-coloring problem from a practical perspective. More precisely, we in-
troduce, implement and test four heuristic approximation algorithms for
the min-max edge 2-coloring problem. These algorithms are based on a
Breadth First Search (BFS)-based heuristic and on local search meth-
ods like basic hill climbing, simulated annealing and tabu search tech-
niques, respectively. Although several algorithms for particular graph
classes were proposed by Larjomaa and Popa (e.g., trees, planar graphs,
cliques, bi-cliques, hypergraphs), we design the first algorithms for gen-
eral graphs.
We study and compare the running data for all algorithms on Unit Disk
Graphs, as well as some graphs from the DIMACS vertex coloring bench-
mark dataset.

1 Introduction

Motivation. In multi-channel Wireless Mesh Networks (WMN), each node
is able to use multiple non-overlapping frequency channels. The use of many
channels inside the same network can significantly improve overall performance.
Interference from neighboring nodes can be decreased substantially when nodes
do not need to use the same radio channel for every link. Multiple radio channels
in the network imply that at least some of the nodes need to handle more than

?
This work was supported by the research programme PN 1819 “Advanced IT resources to support
digital transformation processes in the economy and society - RESINFO-TD” (2018), project PN
1819-01-01 “New research in complex systems modelling and optimization with applications in
industry, business and cloud computing”, funded by the Ministry of Research and Innovation.

ar
X

iv
:1

80
1.

02
23

9v
2

 [
cs

.D
S]

 6
 O

ct
 2

01
8

one channel at a time. In many proposed designs the multi-channel feature is
achieved by packet-by-packet reconfiguration of the radio [12,6,15]. However, one
of the drawbacks of this kind of continuous channel switching of a single radio
interface is that it requires precise synchronization throughout the network.

An alternative approach would be to fit multiple radio interfaces to each
node, thus allowing a more persistent channel allocation per interface. A couple
of such multi-NIC (network interface card) architectures have been proposed
by Raniwala et al. [14,13]. Their simulation and testbed experiments show a
promising improvement with only two NICs per node, compared to a single-
channel WMN. Another appealing feature of these architectures is that they are
based on readily available, commodity IEEE 802.11 interfaces, requiring only
systems software modification.

The scenario of two or more NICs per node with fixed channels imposes
some limitations to the assignment of channels on each interface. In order to set
up a link between two nodes, both of them have to have at least one of their
interfaces set to the same channel. On the other hand, links inside an interference
range should use as many different channels as possible. Thus, the channels need
to be assigned carefully in order to both keep every required link possible and
maximize useful bandwidth throughout the network.

Problem definition The channel assignment problem can be modeled as a
type of edge coloring problem: given a graph G, the edges have to be colored so
that there are at most q different colors incident to each vertex. Here, vertices,
edges and colors represent network nodes, links and channels, respectively. A
coloring that satisfies this constraint, is called an edge q-coloring. Note, that the
coloring constraint differs from the traditional coloring problems, where adjacent
items are not allowed to have the same color. Also the goal is different; instead
of minimizing, we want to maximize the number of different colors in an edge
q-coloring.

Initially, the channel assignment was formulated as the maximum edge q-
coloring problem, where the goal was to maximize the total number of colors
in a q-coloring. The drawback of this model is that in an optimal solution the
same color is assigned to many edges while other colors are used only once. We
remind the reader that in the wireless mesh network setting, having the same
color assigned to many edges is equivalent to having the same frequency used
many times, and therefore, having interference. Since the goal of the application
is to minimize the interference, max edge q-coloring is perhaps not the ideal
theoretical formulation (although max edge q-coloring is still interesting as a
combinatorial problem). Instead, it is more relevant for the network application
to try to have the color components as balanced as possible. Thus, the min-max
edge q-coloring had been introduced, where the goal is to minimize the maximum
size of a color group. The formal definition of the min-max q-coloring follows.

Problem 1 (Min-max edge q-coloring). Given a graph G = (V,E), find an edge
q-coloring σ of G such that the amount maxc|{e ∈ E|σ(e) = c}| is minimized.
In other words, find an edge coloring that minimizes the size of the largest set
of edges with the same color.

Previous work. The problem of finding a maximum edge q-coloring of a
given graph has been first studied by Feng et al. [3,2,4]. They provide a
2-approximation algorithm for q = 2 and a (1 + 4q−2

3q2−5q+2)-approximation for
q > 2. They show that the problem is solvable in polynomial time for trees
and complete graphs in the case q = 2, but the complexity for general graphs
has been left as an open problem. Later, Adamaszek and Popa [1] show that
the problem is APX-hard and present a 5/3-approximation algorithm for graphs
which have a perfect matching. The maximum edge q-coloring is also considered
in combinatorics and is a particular case of the anti-Ramsey number. For a brief
description of the connection of the two problems, the reader can refer to [1].

Larjomaa and Popa [8,9] introduce and study the min-max edge q-coloring
problem. They prove that the problem is NP-hard for any q ≥ 2 and show an
exact polynomial time algorithm for trees, for q = 2. Moreover, Larjomaa and
Popa [9] analyze the value of the optimal solution on special classes of graphs:
cliques, bicliques and hypercubes. They provide the exact formulas of the optimal
solutions for cliques. For bicliques they present a lower bound which is tight when
both parts of the graph have an even number of vertices (and almost tight for
the other cases). For a hypergraph Qn they give a lower bound which is tight for
even n, and similarly, almost tight for odd n. Although these classes of graphs
have a very simple structure, finding lower bounds is much more difficult than
in the case of the max edge q-coloring problem.

A good lower bound of the optimal solution is necessary in order to design
approximation algorithms. For the min-max edge q-coloring problem, a trivial
lower bound is half of the maximum degree. Larjomaa and Popa [9] show another
lower bound in terms of the average degree of the graph. Larjomaa and Popa [9]
also present an approximation algorithm for planar graphs which achieves a
sublinear approximation ratio. The algorithm uses a theorem of Lipton and
Tarjan [10] which says that a planar graph admits a small balanced separator.

Our results. Although the min-max q-coloring problem has been studied for
particular classes of graphs, little has been done for general graphs in the sense
of an approximation algorithm. As such, we design, implement and analyze al-
gorithms for the min-max 2-coloring problem for general graphs.

The paper is organized as follows. In Section 2 we show a Breadth First
Search (BFS)-inspired approach to approximating min-max 2-coloring. In Sec-
tion 3 we present min-max q-coloring as a local search problem in the context of
combinatorial optimization. Subsequently, we build the necessary tools to tackle
min-max edge 2-coloring as a local search problem (provide neighborhood struc-
ture, auxiliary objective function). After this framework is built, we construct
algorithms to solve the problem using hill climbing (its basic nature led to omit-
ting the full algorithm from this paper), simulated annealing (Subsection 3.1)
and tabu search (Subsection 3.2) techniques. Finally, we reveal some experimen-
tal results in Section 4 and provide insight into the difficulty of the problem
and the nature of the methods we employ to solve it. We reveal a simple design
for a BFS-inspired algorithm that yields good results while having the benefit
of the linear time complexity of BFS. We provide evidence that all of our local

search algorithms successfully exploit the search space gradient in improving
their working solutions as shown by a linear decrease in the objective function.
We show that a simple hill climbing approach produces reasonably good solu-
tions using a low number of iterations over the initial solution. Algorithms 2
and 3 (based on simulated annealing and tabu search techniques) take longer to
complete but manage to escape local optima and achieve better solutions.

In the Experimental Results (Section 4) we describe the testing dataset,
analyze the implementation of the local search algorithms and show the behavior
of the described algorithms on our selected dataset. The results are encouraging
while considering the upper bounds for the optimum solutions for a selection of
the input graphs that are obtained with an Integer Linear Program (ILP).

2 A BFS-inspired heuristic algorithm

We show a simple algorithm for approximating the min-max edge 2-coloring by
using Breadth First Search (BFS). The idea is to color the uncolored edges in-
cident to each subsequent “level” in a BFS with a distinct color. The “levels”
denote the starting vertex, then its neighbors, then the neighbors of the neigh-
bors and so on. The full algorithm is presented as Algorithm 1. The algorithm
takes time O(n+m), same as BFS. We can improve the base algorithm by col-
oring disconnected colored components with distinct colors as shown in step 5.
By using a disjoint set forest data structure we may quickly determine these dis-
connected components during the edge coloring step for only a small overhead
of O(α(m)), α denoting the inverse of the Ackermann function.

Algorithm 1 input: graph G = (V,E), an initial vertex v0
1 : Let there be two sets Q1 ← {v0} and Q2 ← ∅. Mark v0 as visited. Integer c← 1.
2 : Color all uncolored edges (vi, vj) incident to each vi ∈ Q1 using integer color c.
3 : During the previous operation, add all unvisited vj (neighbors of vi) to set Q2.
4 : Mark all these vj as visited.
5 : (Improvement step) Consider the subgraph containing all the edges colored with
integer c. Color each disconnected component in this subgraph with a new color
obtained by incrementing c.
6 : Let c← c + 1, Q1 ← Q2 and Q2 ← ∅
7 : If Q1 = ∅ then the algorithm terminates. Else, continue with step 2.

Theorem 1. Algorithm 1 produces a valid 2-coloring.

Proof. The colored subgraph Gi grows at each iteration i of the algorithm by
adding a new layer of previously uncolored edges. The vertices along the border
of Gi all have incident edges with the same color. At step i + 1 these vertices
may obtain a second incident color if they had any uncolored incident edges in
the main graph at iteration step i. Assume that G0 = (V, ∅) and at step i there
is a 2-coloring using i colors in Gi, but in Gi+1 we add a third incident color
different from ci+1 to some vertex p (which has to be at the border of Gi). This
third color comes from an edge that is incident to both p and a vertex q from
the border of Gi+1. This edge can only be colored with ci+1, contradiction. ut

3 Local search algorithms

Min-max edge q-coloring (including 2-coloring) can naturally be modeled as a
combinatorial optimization problem:
– a solution ω is a color mapping from the edge set of the graph to a set of

positive integers, for example.
– the objective function f(ω) used to evaluate the quality of the solution is

the largest number of edges that share the same color. Our purpose is to
minimize this amount, as such, it is a minimization problem.

– the constraint is that the set of edges incident to a vertex can contain edges
that are colored with at most q (respectively, two for 2-coloring) different
colors.

– a feasible solution will respect the constraint across all vertices while an
unfeasible solution will not.
To solve this problem using local search, there are a few more requirements

to fulfill:
– some initial solution ω0 to start improving upon.
– a neighborhood structure N(ω) to provide slightly modified candidate color-

ings that we will evaluate with our objective function. If a neighbor is better
in terms of the objective function then we select it as current solution (i.e.
ωcurrent ← ωbest ∈ N(ωcurrent)).

– some stopping criteria to prevent the algorithm from looping.
For our neighborhood structure we choose operations based neighborhood,

that is to say, we apply some local modifications or moves (i.e. color changes) to
some components of the current solution (i.e. edges). The set of moves applied
to every component of the solution ω will construct the neighborhood N(ω).

Notation 1. In the following we refer to the color class of a vertex as being
the set of colors of its incident edges. We use cc(v) to denote the color class of a
vertex v. By definition, cc(v) =

⋃
(v,v′)∈E σ((v, v′)), where σ is an edge coloring.

We now consider a move set that can be applied only on feasible solutions
(i.e. 2-colorings) and will also produce only feasible solutions.

The defined moves can only be applied in certain cases depending on the
color classes of the endpoint vertices of the edge we operate on. Such scenarios
are depicted in Figure 1 but do not reveal all possible cases. The omitted cases
are those that result in the removal of a color from either or both of the color
classes for exchange, connect and create.

The effect of each move in our defined move set is detailed below:
1. Exchange. Applicable iff the color class of either endpoint is included in the

other (or equal) and at least one of the endpoint vertices has a color class of
cardinality 2: change the color of the edge to the other color in the endpoints’
color classes.
∀e = (v, v′) if {col} = cc(v) ∪ cc(v′) \ {ecolor}: ecolor ← col

2. Connect. Applicable iff the color classes of the endpoint vertices are both of
cardinality 2 and not equal: repaint the edge color, as well as all the edges
using the other two colors in the respective endpoints’ color classes with a
new, unified color.

∀e = (v, v′) if {col1, col2} = cc(v) ∪ cc(v′) \ {ecolor}:

ecolor ← colnew,∀e′ ∈

(⋃
σ(e1)=col1

e1

)
∪

(⋃
σ(e2)=col2

e2

)
: e′color ← colnew

3. Create. Applicable iff the endpoints both have color classes of cardinality 1:
assign a new color to the edge.
∀e = (v, v′) if ∅ = cc(v) ∪ cc(v′) \ {ecolor}: ecolor ← colnew

4. Merge. Essentially an operation that recolors two neighboring colored com-
ponents with a new color. For consistency it is defined as operating on an
edge like the other moves.

(exchange 1) (exchange 2) (connect) (create) (merge)
ecol ← cother ecol ← cother ecol ← (c1 ∪ c2) ecol ← cnew ecol ∪ cother

({ec, co}, {ec, co}) ({ec}, {ec, co}) ({ec, c1}, {ec, c2}) ({ec}, {ec}) ({ec}, {ec, co})

Fig. 1. Illustration of the considered move set in our local search algorithms. The
central horizontal edge in all scenarios is the one that considers changing its color
(ecol). The operation may affect the color of edges other than the horizontal one, as in
merge and connect. Here, the ∪ operator stands for unifying two colors. The bottom
row shows the vertex color classes where the move is applicable.

Theorem 2. The move set defined above can only produce 2-colorings.

Proof. All of the moves change the edge color and never add a third color to the
edge endpoint vertices’ color classes. We can observe that:
1. Exchange case 1 does not add a new color to either color class. At most it

can remove one from either or both.
2. Exchange case 2 can at most add a color to a color class of cardinality 1.
3. Connect modifies the colors in the color classes but they remain of cardi-

nality 2 (or may decrease). Other affected edges maintain their color class
cardinality (or may decrease).

4. Create adds a color to color classes of cardinality 1. A color class may remain
of cardinality 1 if the respective endpoint has degree 1.

5. Merge produces color classes of cardinality 1. Other affected edges maintain
their color class cardinality (or may decrease).

Therefore any move applied on a 2-coloring will produce a 2-coloring. ut

Notation 2. We refer to an edge as being color critical if by removing this
edge from a subgraph containing all of the edges that share its color will result
in the number of connected components increasing in that subgraph.

In our algorithms, recoloring of a color critical edge will cause one of the
resulting connected components to be colored with a new color.

Suppose that we have a solution ω and we operate on an edge which is colored
with the most frequent color. Then, the moves defined above will affect f(ω),
our objective function, in the following way:

1. Exchange will produce f(ω′) ← f(ω) − 1 if the edge is not color critical.
Otherwise the objective function can decrease by more than 1. However, if
the other color present in the endpoints’ color classes has the same frequency
as the one on the edge we operate on, then f(ω′)← f(ω) + 1.

2. Connect will produce f(ω′) ← f(ω) − 1 if the edge is not color critical.
Otherwise the objective function can decrease by more than 1. However, if
the sum of the frequencies of the other two colors in the endpoints’ color
classes is equal to or exceeds that of the edge we operate on, then f(ω′) will
increase by 1 or more.

3. Create will produce f(ω′) ← f(ω) − 1 if the edge is not color critical. Oth-
erwise the objective function can decrease by more than 1.

4. Merge will affect f(ω′) if the number of colored edges that use the new color
exceeds the previous objective function value. The new f(ω′) can be no more
than twice f(ω), just like with the connect case.

The cases when the moves affect a color critical edge of the most frequent
color are tricky: to properly calculate the impact on the objective function one
needs to perform for example a depth first search across all the neighboring
edges to update the objective function. When we want to explore the entire
neighborhood of a solution this becomes computationally expensive as we need
to perform depth first searches for all edges in O(|E|(|V |+ |E|) for all iterations
of our local search algorithms.

To avoid this, one can use probabilistic sampling of the neighborhood. In our
implementations we prefer to discard this computation entirely, as it is certain
that the objective function is decreased by at least 1 with all of the moves if we
are careful about avoiding the special cases that worsen the value.

However, if the objective function can only decrease by 1 in all cases, there
will not be sufficient information to drive the search to good solutions. As such,
we use an auxiliary objective function in terms of defining an attractiveness value
for each of the moves.

Notation 3. In the following we denote count(c) to represent the number of
edges that are colored with color c ∈ C. Formally, count(c) = |{e ∈ E|σ(e) = c}|.

Next, we define the attractiveness for each move (which must be maximized):

1. attexchange(e, ω) = b1 + w1 · count(ecolor) · f(ω)−count(colother)
f(ω)

2. attconnect(e, ω) = b2 + w2 · count(ecolor) · f(ω)−count(col1)−count(col2)−1f(ω)

3. attcreate(e, ω) = b3 + w3 · count(ecolor) · 1
f(ω)

4. attmerge(e, ω) = b4 + w4 · f(ω)−count(ecolor)−count(colother)
f(ω)

The constants bi, wi are used for the fine tuning of the attractiveness values.
Observe that for connect and merge the fraction part of the attractiveness will
be 0 when the newly colored components reach exactly the size of f(ω) and
negative if they exceed f(ω) (and thus worsen the new objective function value).

With all of the above we have all the elements required to build a simple hill
climbing algorithm to approximate min-max 2-coloring by choosing the most
attractive move at each iteration. We may improve upon this algorithm by using
metaheuristics for local search such as simulated annealing and tabu search.

3.1 Simulated annealing algorithm (Algorithm 2).

Algorithm 2 input: graph G = (V,E)

1 : Let the working solution ω to be some initial 2-coloring.
2 : Set up some initial starting temperature of the annealing system: temp← tempinitial

3 : Initialize echosen ← nil, attchosen ← 0
4 : Cycle through edges e ∈ E :
– (accept improving moves always:)

if att(e) > attchosen: echosen ← e, attchosen ← att(e)
– (accept worsening moves with temperature dependent probability:)

else if uniform(0, 1) < exp(att(e)−attchosen
temp

): echosen ← e, attchosen ← att(e)
5 : Perform the move on the working solution: ω ← move(echosen, ω)
6 : temp← temperature decrease schedule(temp)
7 : Evaluate stopping criteria. If one of the criteria is met terminate the algorithm and
output ω. Otherwise, continue with step 3.

In the simulated annealing setup we select an initial temperature for our
system and we may accept worsening moves to our working solution with a
probability p. This probability is affected by the temperature at a particular
iteration step of the algorithm and by the loss in move attractiveness of our
worsening operation. Lowering temperature causes p to decrease, while moves
with low attractiveness also cause a small probability of acceptance.

3.2 Tabu search algorithm (Algorithm 3).

Algorithm 3 input: graph G = (V,E)

1 : Let the working solution ω to be some initial 2-coloring.
2 : Set up the frequency list to contain 0 for all edges, set up TabuList← nil.
3 : Initialize echosen ← nil, attchosen ← 0
4 : Cycle through edges e ∈ E, e /∈ TabuList :
if att(e)−k·frequency(e) > attchosen: echosen ← e, attchosen ← att(e)−k·frequency(e)
5 : Perform the move on the working solution: ω ← move(echosen, ω)
6 : TabuList← TabuList ∪ {e}, frequency(e)← frequency(e) + 1
7 : Evaluate stopping criteria. If one of the criteria is met terminate the algorithm and
output ω. Otherwise, continue with step 3.

To explore the neighborhood of a solution in a more intelligent way we can
employ memory to prevent cycling and drive the search to less explored areas of
the search space. To solve the problem using tabu search techniques we use:
– a simple tabu list providing short-term memory that disallows a move on

any edge recently changed;

– a frequency list on edge moves providing long-term memory. The frequency
of an edge e increases by 1 each time it is used in an exchange operation,
and move attractiveness values receive a penalty of −k · frequency(e) for
some selected constant k.

Theorem 3. Algorithms 2 and 3 produce valid 2-colorings.

Proof. The algorithms take a feasible solution and apply a move set that only
results in feasible solutions (2-colorings). ut

4 Experimental results

4.1 Testing dataset details

Our testing dataset includes computer generated Unit Disk Graphs and Quasi-
Unit Disk Graphs (prefixed with “udg” and “qudg”, respectively in Table 1)
that are traditionally used to model Wireless Mesh Networks: two nodes can
communicate only if they are within transmission range of each other.

In the testing setup, these two aforementioned types of graphs were generated
by deploying 100, 500 and 1000 vertices with uniformly distributed coordinates
over a square with the side measuring 2500 units. The maximum transmission
range parameter is specified as a suffix (e.g. udg500.140 is a Unit Disk Graph
with 500 vertices and transmission range 140). The algorithms were tested on the
largest connected component in each graph. The vertex count, edge count and
maximum degree of the test graphs are presented in Table 1. The transmission
range for the Quasi-Unit Disk Graphs varies uniformly between 50% and 100%
of the maximum specified range. They are generated with the same random seed
as their UDG counterparts so that the layout is identical excepting the absence
of some edges from the qUDG cases.

The rest of our testing dataset contains graphs that are not themselves mod-
elling wireless networks, for the sake of a more thorough analysis. These graphs
are a part of the dataset for the DIMACS graph vertex coloring benchmarks and
their high connectivity proves to be quite a challenge for our local search edge-
coloring algorithms. Note that the following graphs featured in our experimental
result showcase are geometric graphs, which are more relevant to the Wireless
Mesh Network topology: dsjr500.1c, dsjr500.5, r250.5, r1000.1c.

4.2 Algorithms 2 and 3 implementation details.

Our implementations are based on the JGraphT Java Graph Library and are
made publicly available by means of a GitHub repository [11].

In all our local search algorithms we employ a disjoint set forest structure to
keep track of colors when we use the merge and connect moves. The create move
draws a new color by incrementing a static counter. Every so often, we renumber
the colors because all moves except create can cause colors to disappear from the
coloring. The vertex color classes are maintained inside a hash map structure.

After every iteration it is necessary to perform a depth first search to recolor a
potential new connected component that becomes disconnected when an edge
changes color. Every iteration takes total time O(|E|α(|V |)).

In our simulated annealing algorithm we have selected for our cooling schedule
the exponential cooling scheme T ′ ← kT , with k < 1, close to 1, as first proposed
by Kirkpatrik et al. [5].

In our tabu search algorithm we use hash map structures to keep track of the
tabu moves and quickly determine if a move is tabu or not.

4.3 Running data

Our experiments for the min-max 2-coloring approximation algorithms are per-
formed on a selection of Unit Disk Graphs with increasing vertex density and
transmission range, as well as on DIMACS benchmark graphs.

0 5 10 15 20 25 30 35 40
1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

iterations (thousands)

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e SA T=100 factor=0.9995

SA T=100 factor=0.99999
TS tenure=7

TS tenure=1500
Hill Climb

Fig. 2. A plot illustrating the quality of the incumbent solution at each iteration of the
algorithms on a selected graph (7968 edges). Marks indicate best achieved solutions.

To compare the local search algorithms in terms of the quality of the produced
solution the time required to obtain it, we plot the value of the objective function
for the current solution at each iteration step in Figure 2. To compute the values,
we start with an initial solution containing a single colored component and select
graph qudg1000.220 and the best combination of parameters we have discovered.
The plot makes it easy to observe the linear drop in the objective function for
5000 units and between iterations 1 and 5000. This is a strong point of local
search techniques as they exploit the gradient in the search space. Their weakness
is that once they reach a local optimum it is hard to escape it as there are no
more improving moves to be considered. Simulated annealing approaches this
problem by adding randomness to the moves that are selected and we can see
the result in the quality of the found solutions. Tabu search will run out of
improving moves and will attempt worsening ones to escape the local optimum.
The spikes in the objective value function correspond to applying the merge
move which sometimes almost doubles the last best value.

For our local search algorithms we choose the initial solution to be either the
solution given by Algorithm 1 or a single colored component. We stop the algo-
rithms when they fail to produce an improvement for a set number of iterations.

Table 1. Algorithm running data. The first four columns display graph name, vertex
count, edge count and maximum vertex degree. The next three columns represent
the objective function value obtained by executing hill climbing, simulated annealing
and tabu search with a blank (single color) initial solution. The following column is
the solution for the BFS-based algorithm and then the solutions for the local search
algorithms now starting with it as an initial solution. The last column gives an upper
bound for the value of the optimum solution. The best solutions are highlighted.

Graph |V | |E| Deg HC SA TS BFS HC′ SA′ TS′ ILP

udg100.400 100 347 12 46 40 32 33 30 27 27 22
udg100.600 100 694 22 177 156 131 140 124 113 113 86
qudg100.400 100 232 9 29 19 19 21 19 17 17 12
qudg100.600 100 525 18 104 80 79 88 82 66 64 56
udg500.140 357 893 12 36 33 35 35 32 28 28 23
udg500.180 499 1862 16 198 156 120 77 70 59 54 63
udg500.220 500 2776 22 840 402 834 195 190 190 148 127
udg1000.140 1000 4641 20 359 173 183 163 141 133 102 -
udg1000.180 1000 7592 28 2218 1073 2218 579 579 579 478 -
udg1000.220 1000 11152 39 4132 3443 3854 1058 1058 1058 1058 -
qudg500.140 108 198 9 17 12 16 15 12 12 12 10
qudg500.180 480 1281 13 66 52 45 48 34 38 31 29
qudg500.220 500 1965 17 251 219 100 90 79 67 64 -
qudg1000.140 998 3305 14 120 135 78 78 65 60 56 -
qudg1000.180 1000 5427 21 614 542 586 295 255 220 215 -
qudg1000.220 1000 7968 31 2601 1727 2601 623 619 619 614 -
dsjc250.5 250 15668 147 7834 7182 7193 10148 7625 7625 7625 5234
dsjc500.1 500 12458 68 6123 5558 6123 9162 6084 6084 6084 5824
dsjc500.5 500 62624 286 31115 30089 31115 42946 30766 30766 33946 -
dsjr500.5 500 58862 388 29326 28653 29326 28724 28704 28704 28704 -
flat300 28 0 300 21695 162 10586 10781 10586 14604 10551 10551 10551 -
le450 25c 450 17343 179 8214 8416 8214 8614 8614 7549 7286 5781
le450 25d 450 17425 157 8339 7763 8339 8667 8667 7484 7154 5952
r250.5 250 14849 191 7425 6530 6806 7321 7321 5813 5813 4950

We compare the algorithms with solutions obtained by running an ILP solver
(Gurobi) on the the linear program formulation from [7]. To obtain these solu-
tions we had to limit the running time of the solver (3 hours) and the maximum
number of allowed colors in the linear program (which in turn decreases the
number of variables). As such, the obtained linear program solutions are not the
optimum solution and instead are an upper bound for each min-max 2-coloring
on the respective graph.

Finally, we present the running data for our algorithms on a selection of
graphs in Table 1. The results are encouraging for Unit Disk Graphs and their
variants. Our tabu search heuristic applied to the solution of the BFS algorithm
seems to consistently yield good results by improving (decreasing) the objective
by up to 37% (21% on average). For some graphs, the BFS-inspired algorithm
seems to create a harder to escape local optimum for the local search heuristic
algorithms. This is where simulated annealing produces the best results starting
from a blank (single color) initial solution.

5 Conclusions and future work

The newly designed algorithms for the 2-coloring min-max problem offer a prac-
tical method of obtaining good solutions without resorting to more time con-
suming exact methods.

More techniques to approach the problem may be used, such as recombination
heuristics. An idea is to attempt to find some coding for graphs with colored
edges suitable for solving 2-coloring by using a genetic algorithm approach.

It would be interesting to find a constant factor approximation algorithm for
min-max edge q-coloring.

References

1. A. Adamaszek and A. Popa. Approximation and hardness results for the maximum
edge q-coloring problem. In ISAAC (2), pages 132–143, 2010.

2. W. Feng, P. Chen, and B. Zhang. Approximate maximum edge coloring within
factor 2: a further analysis. In ISORA, pages 182–189, 2008.

3. W. Feng, L. Zhang, W. Qu, and H. Wang. Approximation algorithms for maximum
edge coloring problem. In TAMC, pages 646–658, 2007.

4. W. Feng, L. Zhang, and H. Wang. Approximation algorithm for maximum edge
coloring. Theor. Comput. Sci., 410(11):1022–1029, 2009.

5. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, et al. Optimization by simulated
annealing. science, 220(4598):671–680, 1983.

6. P. Kyasanur and N.H. Vaidya. Routing and interface assignment in multi-channel
multi-interface wireless networks. In Wireless Communications and Networking
Conference, 2005 IEEE, volume 4, pages 2051–2056. IEEE, 2005.

7. T. Larjomaa. Improving bandwidth in wireless mesh networks. Master’s thesis,
School of Electrical Engineering, Aalto University, 2 2013.

8. T. Larjomaa and A. Popa. The min-max edge q-coloring problem. In International
Workshop on Combinatorial Algorithms, pages 226–237. Springer, 2014.

9. T. Larjomaa and A. Popa. The min-max edge q-coloring problem. J. Graph
Algorithms Appl., 19(1):507–528, 2015.

10. R. Lipton and R. Tarjan. Applications of a planar separator theorem. SIAM
Journal on Computing, 9(3):615–627, 1980.

11. R.S. Mincu. Java implementation of heuristic algorithms for the maximum and
min-max 2-coloring problems. https://github.com/radusm/minmax, 2017.

12. A. Muir and J.J. Garcia-Luma-Aceves. A channel access protocol for multihop
wireless networks with multiple channels. In ICC 1998, volume 3, pages 1617
–1621 vol.3, jun 1998.

13. A. Raniwala and T. Chiueh. Architecture and algorithms for an ieee 802.11-based
multi-channel wireless mesh network. In INFOCOM, pages 2223–2234, 2005.

14. A. Raniwala, K. Gopalan, and T. Chiueh. Centralized channel assignment and
routing algorithms for multi-channel wireless mesh networks. Mobile Computing
and Communications Review, 8(2):50–65, 2004.

15. J. So and N.H. Vaidya. Multi-channel mac for ad hoc networks: handling multi-
channel hidden terminals using a single transceiver. In MobiHoc 2004, pages 222–
233. ACM, 2004.

https://github.com/radusm/minmax

	Heuristic algorithms for the min-max edge 2-coloring problem

