Skip to main content

Lower Bounds for Special Cases of Syntactic Multilinear ABPs

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10976))

Included in the following conference series:

Abstract

Algebraic Branching Programs (ABPs) are standard models for computing polynomials. Syntactic multilinear ABPs (smABPs) are restrictions of ABPs where every variable is allowed to occur at most once in every path from the start to terminal node. Proving lower bounds against syntactic multilinear ABPs remains a challenging open question in Algebraic Complexity Theory. The current best known bound is only quadratic [Alon,Kumar,Volk ECCC 2017].

In this article, we develop a new approach upper bounding the rank of the partial derivative matrix of syntactic multilinear ABPs: Convert the ABP to a syntactic multilinear formula with a super polynomial blow up in the size and then exploit the structural limitations of resulting formula to obtain a rank upper bound. Using this approach, we prove exponential lower bounds for special cases of smABPs and circuits namely, sum of Oblivious Read-Once ABPs, r-pass multilinear ABPs and sparse ROABPs. En route, we also prove super-polynomial lower bound for a special class of syntactic multilinear arithmetic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alon, N., Kumar, M., Volk, B.L.: An almost quadratic lower bound for syntactically multilinear arithmetic circuits. ECCC 24, 124 (2017). https://eccc.weizmann.ac.il/report/2017/124

  2. Anderson, M., Forbes, M.A., Saptharishi, R., Shpilka, A., Volk, B.L.: Identity testing and lower bounds for read-k oblivious algebraic branching programs. In: CCC, pp. 30:1–30:25 (2016). https://doi.org/10.4230/LIPIcs.CCC.2016.30

    Article  MathSciNet  Google Scholar 

  3. Arvind, V., Raja, S.: Some lower bound results for set-multilinear arithmetic computations. Chicago J. Theoret. Comput. Sci. (2016). http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html

  4. Baur, W., Strassen, V.: The complexity of partial derivatives. Theoret. Comput. Sci. 22, 317–330 (1983). https://doi.org/10.1016/0304-3975(83)90110-X

    Article  MathSciNet  MATH  Google Scholar 

  5. Chillara, S., Limaye, N., Srinivasan, S.: Small-depth multilinear formula lower bounds for iterated matrix multiplication, with applications. In: STACS (2018). http://arxiv.org/abs/1710.05481

  6. Forbes, M.: Polynomial identity testing of read-once oblivious algebraic branching programs. Ph.D. thesis, Massachusetts Institute of Technology (2014)

    Google Scholar 

  7. Jansen, M.J.: Lower bounds for syntactically multilinear algebraic branching programs. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 407–418. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85238-4_33

    Chapter  Google Scholar 

  8. Kayal, N., Nair, V., Saha, C.: Separation between read-once oblivious algebraic branching programs (ROABPs) and multilinear depth three circuits. In: STACS, pp. 46:1–46:15 (2016). https://doi.org/10.4230/LIPIcs.STACS.2016.46

  9. Mahajan, M., Tawari, A.: Sums of read-once formulas: how many summands are necessary? Theoret. Comput. Sci. 708, 34–45 (2018). https://doi.org/10.1016/j.tcs.2017.10.019

    Article  MathSciNet  MATH  Google Scholar 

  10. Nisan, N.: Lower bounds for non-commutative computation (extended abstract). In: STOC, pp. 410–418 (1991). https://doi.org/10.1145/103418.103462

  11. Ramya, C., Rao, B.V.R.: Sum of products of read-once formulas. In: FSTTCS, pp. 39:1–39:15 (2016). https://doi.org/10.4230/LIPIcs.FSTTCS.2016.39

  12. Raz, R.: Separation of multilinear circuit and formula size. Theory Comput. 2(6), 121–135 (2006). https://doi.org/10.4086/toc.2006.v002a006

    Article  MathSciNet  MATH  Google Scholar 

  13. Raz, R.: Multi-linear formulas for permanent and determinant are of super-polynomial size. J. ACM 56(2) (2009). https://doi.org/10.1145/1502793.1502797

    Article  MathSciNet  Google Scholar 

  14. Raz, R., Yehudayoff, A.: Balancing syntactically multilinear arithmetic circuits. Comput. Complex. 17(4), 515–535 (2008). https://doi.org/10.1007/s00037-008-0254-0

    Article  MathSciNet  Google Scholar 

  15. Saptharishi, R.: A survey of lower bounds in arithmetic circuit complexity (2015). https://github.com/dasarpmar/lowerbounds-survey

  16. Valiant, L.G.: Completeness classes in algebra. In: STOC, pp. 249–261 (1979). https://doi.org/10.1145/800135.804419

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ramya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramya, C., Rao, B.V.R. (2018). Lower Bounds for Special Cases of Syntactic Multilinear ABPs. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94776-1_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics