Abstract
Algebraic Branching Programs (ABPs) are standard models for computing polynomials. Syntactic multilinear ABPs (smABPs) are restrictions of ABPs where every variable is allowed to occur at most once in every path from the start to terminal node. Proving lower bounds against syntactic multilinear ABPs remains a challenging open question in Algebraic Complexity Theory. The current best known bound is only quadratic [Alon,Kumar,Volk ECCC 2017].
In this article, we develop a new approach upper bounding the rank of the partial derivative matrix of syntactic multilinear ABPs: Convert the ABP to a syntactic multilinear formula with a super polynomial blow up in the size and then exploit the structural limitations of resulting formula to obtain a rank upper bound. Using this approach, we prove exponential lower bounds for special cases of smABPs and circuits namely, sum of Oblivious Read-Once ABPs, r-pass multilinear ABPs and sparse ROABPs. En route, we also prove super-polynomial lower bound for a special class of syntactic multilinear arithmetic circuits.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alon, N., Kumar, M., Volk, B.L.: An almost quadratic lower bound for syntactically multilinear arithmetic circuits. ECCC 24, 124 (2017). https://eccc.weizmann.ac.il/report/2017/124
Anderson, M., Forbes, M.A., Saptharishi, R., Shpilka, A., Volk, B.L.: Identity testing and lower bounds for read-k oblivious algebraic branching programs. In: CCC, pp. 30:1–30:25 (2016). https://doi.org/10.4230/LIPIcs.CCC.2016.30
Arvind, V., Raja, S.: Some lower bound results for set-multilinear arithmetic computations. Chicago J. Theoret. Comput. Sci. (2016). http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
Baur, W., Strassen, V.: The complexity of partial derivatives. Theoret. Comput. Sci. 22, 317–330 (1983). https://doi.org/10.1016/0304-3975(83)90110-X
Chillara, S., Limaye, N., Srinivasan, S.: Small-depth multilinear formula lower bounds for iterated matrix multiplication, with applications. In: STACS (2018). http://arxiv.org/abs/1710.05481
Forbes, M.: Polynomial identity testing of read-once oblivious algebraic branching programs. Ph.D. thesis, Massachusetts Institute of Technology (2014)
Jansen, M.J.: Lower bounds for syntactically multilinear algebraic branching programs. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 407–418. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85238-4_33
Kayal, N., Nair, V., Saha, C.: Separation between read-once oblivious algebraic branching programs (ROABPs) and multilinear depth three circuits. In: STACS, pp. 46:1–46:15 (2016). https://doi.org/10.4230/LIPIcs.STACS.2016.46
Mahajan, M., Tawari, A.: Sums of read-once formulas: how many summands are necessary? Theoret. Comput. Sci. 708, 34–45 (2018). https://doi.org/10.1016/j.tcs.2017.10.019
Nisan, N.: Lower bounds for non-commutative computation (extended abstract). In: STOC, pp. 410–418 (1991). https://doi.org/10.1145/103418.103462
Ramya, C., Rao, B.V.R.: Sum of products of read-once formulas. In: FSTTCS, pp. 39:1–39:15 (2016). https://doi.org/10.4230/LIPIcs.FSTTCS.2016.39
Raz, R.: Separation of multilinear circuit and formula size. Theory Comput. 2(6), 121–135 (2006). https://doi.org/10.4086/toc.2006.v002a006
Raz, R.: Multi-linear formulas for permanent and determinant are of super-polynomial size. J. ACM 56(2) (2009). https://doi.org/10.1145/1502793.1502797
Raz, R., Yehudayoff, A.: Balancing syntactically multilinear arithmetic circuits. Comput. Complex. 17(4), 515–535 (2008). https://doi.org/10.1007/s00037-008-0254-0
Saptharishi, R.: A survey of lower bounds in arithmetic circuit complexity (2015). https://github.com/dasarpmar/lowerbounds-survey
Valiant, L.G.: Completeness classes in algebra. In: STOC, pp. 249–261 (1979). https://doi.org/10.1145/800135.804419
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Ramya, C., Rao, B.V.R. (2018). Lower Bounds for Special Cases of Syntactic Multilinear ABPs. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_58
Download citation
DOI: https://doi.org/10.1007/978-3-319-94776-1_58
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94775-4
Online ISBN: 978-3-319-94776-1
eBook Packages: Computer ScienceComputer Science (R0)