Skip to main content

Benchmarking the Agent Descriptivity of Parallel Multi-agent Simulators

  • Conference paper
  • First Online:
Highlights of Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection (PAAMS 2018)

Abstract

Agent-based models (ABMs) need to populate a mega number of agents over a scalable simulation space in order to handle practical problems, (e.g., metropolitan traffic simulation and nationwide epidemic prediction). Although parallel and distributed simulation have steadily addressed their computational needs, non-computing scientists still tend to use GUI-rich, easy-to-use ABM interpretive platforms. This paper intends to identify the difficulty in using the current parallel ABM simulators and to propose their future improvements. For this purpose, we surveyed different ABM applications, modeled them as seven benchmark test cases, used them to analyze the agent descriptivity of parallel ABM simulators, and evaluated their execution performance affected by the current implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://ccl.northwestern.edu/netlogo/.

  2. 2.

    https://repast.github.io/repast_simphony.html.

  3. 3.

    https://cs.gmu.edu/~eclab/projects/mason/.

  4. 4.

    https://sites.google.com/site/distributedmason/.

  5. 5.

    http://www.flame.ac.uk.

  6. 6.

    https://repast.github.io/repast_hpc.html.

  7. 7.

    http://pedsim.silmaril.org/.

  8. 8.

    http://www.matsim.org.

  9. 9.

    http://www.urbansim.com.

  10. 10.

    http://www2.econ.iastate.edu/tesfatsi/ace.htm.

  11. 11.

    https://bitbucket.org/mass_application_developers/.

References

  1. Ang, C.S., Zaphiris, P.: Simulating social networks of online communities: simulation as a method for social design. In: IFIP Conference on Human-Computer Interaction - INTERACT 2009, Uppsala, Sweden, pp. 443–456, August 2009

    Google Scholar 

  2. Barrett, C.L., et al.: TRANSSIMS (TRansportation ANalysis SIMulation System) - Overview. La-ur-99-1658, Los Alamos National Laboratory, May 1999

    Google Scholar 

  3. Bohnabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 3, pp. 7280–7287, May 2002

    Google Scholar 

  4. Borrill, P.L., Tesfatsion, L.: The Elgar companion to recent economic methodology. In: Agent-Based Modeling: The Right Mathematics for the Social Sciences?, pp. 228–258. Edward Elgar Publishers, February 2011

    Google Scholar 

  5. Borst, P.: The first implementation of the WAVE system for UNIX and TCP/IP computer networks. Technical report 18/92, University of Karlsruhe, December 1992

    Google Scholar 

  6. Bowzer, C., Phan, B., Cohen, K., Fukuda, M.: Collision-free agent migration in spatial simulation. In: Proceedings of 11th Joint Agent-oriented Workshops in Synergy (JAWS 2017), Prague, Czech, September 2017

    Google Scholar 

  7. Chao, D.L., Halloran, M.E., Obenchain, V.J., Longini Jr., I.M.: FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput. Biol. 6(1), 517–527 (2010)

    Article  MathSciNet  Google Scholar 

  8. Chiacchio, F., Pennisi, M., Russo, G., Motta, S., Pappalardo, F.: Agent-based modeling of the immune system: NetLogo, a promising framework. BioMed Res. Int. (2014). https://doi.org/10.1155/2014/907171

  9. Cicirelli, F., et al.: Edge computing and social internet of things for large-scale smart environments development. IEEE Internet of Things J. (2017). https://doi.org/10.1109/JIOT.2017.2775739

  10. Deissenberg, C., van der Hoog, S., Dawid, H.: EURACE: a massively parallel agent-based model of the European economy. Appl. Math. Comput. 204(2), 541–552 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Dewdney, A.K.: Computer recreations sharks and fish wage an ecological war on the toroidal planet Wa-Tor. Sci. Am. 6, 14–22 (1984)

    Article  Google Scholar 

  12. Epstein, J., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom Up, p. 224. Brookings Institution Press, Washington, DC (1996)

    Google Scholar 

  13. Fortino, G., et al.: Modeling and simulating internet-of-things systems: a hybrid agent-oriented approach. Comput. Sci. Eng. 19(5), 68–76 (2017)

    Article  Google Scholar 

  14. Gardner, M.: The fantastic combinations of John Conway’s new solitaire game “life”. Sci. Am. 223, 120–123 (1970)

    Article  Google Scholar 

  15. Gilbert, N., Bankes, S.: Platforms and methods for agent-based modeling. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 99, No. 3, pp. 7197–7198, May 2002

    Article  Google Scholar 

  16. Jacintho, L.F.O., Batista, A.F.M., Ruas, T., Slive, F.A.: An agent-based model for the spread of the Dengue fever: a swarm platform simulation approach. In: Proceedings of the 2010 Spring Simulation Multiconference, SpringSim 2010. SCS, Orland, FL, April 2010, https://doi.org/10.1145/1878537.1878540

  17. Kawasaki, F.: Accelerating large-scale simulations of coortical neuronal network development. Master’s thesis, MSCSSE, University of Washington Bothell (2012)

    Google Scholar 

  18. Klimek, P., Poledna, S., Farmer, J.D., Thurner, S.: To bail-out or to bail-in? Answers from an agent-based model. J. Econ. Dyn. Control 50, 144–154 (2015)

    Article  MathSciNet  Google Scholar 

  19. Levitt, R.E.: VDT computational emulation models of organizations: state of the art and practice. Technical report, Stanford University (2000). http://web.stanford.edugroup/VDT/VDT.pdf

  20. Lu, W., Liu, C., Bhaduri, B.: Agent-based large-scale emergency evacuation using real-time open government data. In: Proceedings of Workshops on Big Data and Urban Informatics, Chicaco, IL, August 2014

    Google Scholar 

  21. Nuria, P., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association (2017)

    Google Scholar 

  22. Rogers, A., et al.: Supporting dyanmic data structures on distributed-memory machines. TOPLAS 17(2), 233–263 (1995)

    Article  MathSciNet  Google Scholar 

  23. Rousset, A., Herrmann, B., Lang, C., Philippe, L.: A survey on parallel and distributed multi-agent systems for high performance computing simulations. Comput. Sci. Rev. 22, 27–46 (2016)

    Article  MathSciNet  Google Scholar 

  24. Savaglio, C., Fortino, G., Ganzha, M., Paprzycki, M., Bădică, C., Ivanović, M.: Agent-based computing in the internet of things: a survey. In: Ivanović, M., Bădică, C., Dix, J., Jovanović, Z., Malgeri, M., Savić, M. (eds.) IDC 2017. SCI, vol. 737, pp. 307–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66379-1_27

    Chapter  Google Scholar 

  25. Segovia-Juarez, J.L., Ganguli, S., Kirschner, D.: Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J. Theor. Biol. 231(3), 357–376 (2004)

    Article  MathSciNet  Google Scholar 

  26. Suresh, S., Gutmann, M.P.: Rebuilding the MOSAIC: fostering research in social, behavioral, and economic sciences at the national science foundation in the next decade. NSF 11–086, National Science Foundation, Directorate for Social, Behavioral and Economic Sciences, Arlington, VA USA (2011)

    Google Scholar 

  27. Thorne, B.C., Bailey, A.M.: Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann. Biomed. Eng. 35(6), 916–936 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munehiro Fukuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shih, C., Yang, C., Fukuda, M. (2018). Benchmarking the Agent Descriptivity of Parallel Multi-agent Simulators. In: Bajo, J., et al. Highlights of Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection. PAAMS 2018. Communications in Computer and Information Science, vol 887. Springer, Cham. https://doi.org/10.1007/978-3-319-94779-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94779-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94778-5

  • Online ISBN: 978-3-319-94779-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics