Skip to main content

Regression, Classification and Ensemble Machine Learning Approaches to Forecasting Clinical Outcomes in Ischemic Stroke

  • Conference paper
  • First Online:
Book cover Biomedical Engineering Systems and Technologies (BIOSTEC 2017)

Abstract

We applied different machine learning approaches to predict (forecast) the clinical outcome, measured by the modified Rankin Scale (mRS) score, of ischemic stroke patients 90 days after stroke. Regression, multinomial classification, and ordinal regression tasks were considered. M5 model trees followed by bootstrap aggregating as a meta-learning technique produced the best regression results. The same regression technique when used for classification after discretization of the target attribute also performed better than regular multinomial classification. For the ordinal regression task, the logit link function (ordinal logistic regression) outperformed the alternatives. We discuss the methodology used, and compare the results with other standard predictive techniques. We also analyze the results to provide insights into the factors that affect stroke outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raffeld, M., Debette, S., Woo, D.: International stroke genetics consortium update. Stroke 47(4), 1144–1145 (2016). https://doi.org/10.1161/STROKEAHA.116.012682

    Article  Google Scholar 

  2. Mozaffarian, D., Benjamin, E.J., Go, A.S., et al.: Heart disease and stroke statistics—2016 update. Circulation 133(4), e38–e360 (2016). https://doi.org/10.1161/CIR.0000000000000350

    Article  Google Scholar 

  3. Rankin, J.: Cerebral vascular accidents in patients over the age of 60: II. Prognosis. Scott. Med. J. 2, 200–215 (1957)

    Article  Google Scholar 

  4. Kabir, A., Ruiz, C., Alvarez, S.A., Moonis, M.: Predicting outcome of ischemic stroke patients using bootstrap aggregating with M5 Model trees. In: van den Broek, E.L., Fred, A., Gamboa, H., Vaz, M. (eds.) 10th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2017, Proceedings Volume 5: HealthInf, 21–23 February, Porto, Protugal, pp. 178–187 (2017)

    Google Scholar 

  5. van Swieten, J.C., Koudstaal, P.J., Visser, M.C., Schouten, H.J., van Gijn, J.: Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19(5), 604–607 (1988)

    Article  Google Scholar 

  6. Banks, J.L., Marotta, C.A.: Outcomes validity and reliability of the modified rankin scale: implications for stroke clinical trials: a literature review and synthesis. Stroke 38(3), 1091–1096 (2007)

    Article  Google Scholar 

  7. Bruno, A., Shah, N., Lin, C., Close, B., Hess, D.C., Davis, K., Baute, V., Switzer, J.A., Waller, J., Nichols, F.T.: Improving modified rankin scale assessment with a simplified questionnaire. Stroke 41(5), 1048–1050 (2010). https://doi.org/10.1161/STROKEAHA.109.571562

    Article  Google Scholar 

  8. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Boston (2005)

    Google Scholar 

  9. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth, Belmont (1984)

    MATH  Google Scholar 

  10. Quinlan, J.R.: Learning with continuous classes. In: Adams, A., Sterling, L. (eds.) 5th Australian Joint Conference on Artificial Intelligence, Hobart, Australia, pp. 343–348 (1992)

    Google Scholar 

  11. Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes. In: van Someren, M., Widmer, G. (eds.) 9th European Conference on Machine Learning. University of Economics, Prague (1996)

    Google Scholar 

  12. Etemad-Shahidi, A., Mahjoobi, J.: Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Eng. 36(15–16), 1175–1181 (2009). https://doi.org/10.1016/j.oceaneng.2009.08.008

    Article  Google Scholar 

  13. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Aslam, J., Popa, R., Rivest, R.: On estimating the size and confidence of a statistical audit. USENIX/ACCURATE Electron. Voting Technol. Workshop 7, 8 (2007)

    Google Scholar 

  15. McCullagh, P.: Regression models for ordinal data. J. R. Stat. Soc.: Ser. B (Methodol.) 42(2), 109–142 (1980)

    MathSciNet  MATH  Google Scholar 

  16. Herbrich, R., Graepel, T., Obermayer, K.: Regression models for ordinal data: a machine learning approach. Technische Universität Berlin, Fachbereich 13, Informatik, Berlin (1999)

    Google Scholar 

  17. Anderson, J.: Regression and ordered categorical variables. J. R. Stat. Soc.: Ser. B (Methodol.) 46(1), 1–30 (1984)

    MathSciNet  MATH  Google Scholar 

  18. Agresti, A.: An Introduction to Categorical Data Analysis. Wiley-Interscience, Hoboken (2007)

    Book  Google Scholar 

  19. Bender, R., Grouven, U.: Ordinal logistic regression in medical research. J. R. Coll. Phys. Lond. 31(5), 546–551 (1997)

    Google Scholar 

  20. Moonis, M., Kane, K., Schwiderski, U., Sandage, B.W., Fisher, M.: HMG-CoA reductase inhibitors improve acute ischemic stroke outcome. Stroke 36(6), 1298–1300 (2005)

    Article  Google Scholar 

  21. Marini, C., De Santis, F., Sacco, S., Russo, T., Olivieri, L., Totaro, R., Carolei, A.: Contribution of atrial fibrillation to incidence and outcome of ischemic stroke. Stroke 36(6), 1115–1119 (2005)

    Article  Google Scholar 

  22. Yong, M., Kaste, M.: Dynamic of hyperglycemia as a predictor of stroke outcome in the ECASS-II trial. Stroke 39(10), 2749–2755 (2008). https://doi.org/10.1161/STROKEAHA.108.514307

    Article  Google Scholar 

  23. Nogueira, R.G., Liebeskind, D.S., Sung, G., Duckwiler, G., Smith, W.S.: Multi MERCI writing committee: predictors of good clinical outcomes, mortality, and successful revascularization in patients with acute ischemic stroke undergoing thrombectomy: pooled analysis of the mechanical embolus removal in cerebral ischemia (MERCI) and multi MERCI trials. Stroke 40(12), 3777–3783 (2009). https://doi.org/10.1161/STROKEAHA.109.561431

    Article  Google Scholar 

  24. Henninger, N., Lin, E., Baker, S.P., Wakhloo, A.K., Takhtani, D., Moonis, M.: Leukoaraiosis predicts poor 90-Day outcome after acute large cerebral artery occlusion. Cerebrovascular Diseases. 33(6), 525–531 (2012). https://doi.org/10.1159/000337335

    Article  Google Scholar 

  25. Kissela, B., Lindsell, C.J., Kleindorfer, D., Alwell, K., Moomaw, C.J., Woo, D., Flaherty, M.L., Air, E., Broderick, J., Tsevat, J.: Clinical prediction of functional outcome after ischemic stroke: the surprising importance of periventricular white matter disease and race. Stroke 40(2), 530–536 (2008). https://doi.org/10.1161/STROKEAHA.108.521906

    Article  Google Scholar 

  26. Optimising Analysis of Stroke Trials Collaboration: Calculation of sample size for stroke trials assessing functional outcome: comparison of binary and ordinal approaches. Int. J. Stroke 3(2), 78–84 (2008). https://doi.org/10.1111/j.1747-4949.2008.00184.x

  27. Sandset, E.C., Bath, P.M., Boysen, G., Jatuzis, D., Kõrv, J., Lüders, S., Murray, G.D., Richter, P.S., Roine, R.O., Terént, A., Thijs, V., Berge, E.: SCAST study group: the angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial. Lancet 377(9767), 741–750 (2011). https://doi.org/10.1016/S0140-6736(11)60104-9

    Article  Google Scholar 

  28. Gialanella, B., Santoro, R., Ferlucci, C.: Predicting outcome after stroke: the role of basic activities of daily living. Eur. J. Phys. Rehabil. Med. 49(5), 629–637 (2013)

    Google Scholar 

  29. Granger, C.V., Hamilton, B.B., Keith, R.A., Zielezny, M., Sherwin, F.S.: Advances in functional assessment for medical rehabilitation. Top. Geriatr. Rehabil. 1(3), 59–74 (1986)

    Article  Google Scholar 

  30. Brown, A.W., Therneau, T.M., Schultz, B.A., Niewczyk, P.M., Granger, C.V.: Measure of functional independence dominates discharge outcome prediction after inpatient rehabilitation for stroke. Stroke 46(4), 1038–1044 (2015). https://doi.org/10.1161/STROKEAHA.114.007392

    Article  Google Scholar 

  31. Adams Jr., H.P., Bendixen, B.H., Kappelle, L.J., Biller, J., Love, B.B., Gordon, D.L., Marsh 3rd, E.E.: Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24(1), 35–41 (1993)

    Article  Google Scholar 

  32. Brott, T., Adams Jr., H.P., Olinger, C.P., Marler, J.R., Barsan, W.G., Biller, J., Spilker, J., Holleran, R., Eberle, R., Hertzberg, V., et al.: Measurements of acute cerebral infarction: a clinical examination scale. Stroke 20(7), 864–870 (1989)

    Article  Google Scholar 

  33. Nakayama, H., Jorgensen, H.S., Raaschou, H.O., Olsen, T.S.: The influence of age on stroke outcome. The Copenhagen Stroke Study. Stroke 25(4), 808–813 (1994)

    Article  Google Scholar 

  34. Frank, E., Hall, M.A., Witten, I.H.: The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  35. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), vol. 2, pp. 1137–1145 (1995)

    Google Scholar 

  36. Lee Rodgers, J., Nicewander, W.A.: Thirteen ways to look at the correlation coefficient. Am. Stat. 42(1), 59–66 (1988)

    Article  Google Scholar 

  37. Moore, D.S., Notz, W.I., Fligner, M.A.: The Basic Practice of Statistics. W.H. Freeman and Co., New York (2015)

    Google Scholar 

  38. Quinlan, J.R.: C4.5 - Programs for Machine Learning. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  39. Christensen, R.H.B.: Regression Models for Ordinal Data [R package ordinal version 2015.6-28]. https://cran.r-project.org/web/packages/ordinal/index.html

  40. Bozdogan, H.: Model selection and Akaike’s Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika 52(3), 345–370 (1987)

    Article  MathSciNet  Google Scholar 

  41. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005). https://doi.org/10.3354/cr030079

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dr. Klaus Brinker for suggesting using ordinal regression as an additional technique in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kabir, A., Ruiz, C., Alvarez, S.A., Moonis, M. (2018). Regression, Classification and Ensemble Machine Learning Approaches to Forecasting Clinical Outcomes in Ischemic Stroke. In: Peixoto, N., Silveira, M., Ali, H., Maciel, C., van den Broek, E. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2017. Communications in Computer and Information Science, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-94806-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94806-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94805-8

  • Online ISBN: 978-3-319-94806-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics