1806.03315v1 [cs.FL] 8 Jun 2018

arxXiv

Algorithms and Training for Weighted Multiset
Automata and Regular Expressions

Justin DeBenedetto and David Chiang

Department of Computer Science and Engineering
University of Notre Dame, Notre Dame, IN 46556, USA
{jdebened,dchiang}@nd.edu

Abstract. Multiset automata are a class of automata for which the
symbols can be read in any order and obtain the same result. We in-
vestigate weighted multiset automata and show how to construct them
from weighted regular expressions. We present training methods to learn
the weights for weighted regular expressions and for general multiset au-
tomata from data. Finally, we examine situations in which inside weights
can be computed more efficiently.

Keywords: multiset automata, multiset regular expressions, weighted
automata, weighted regular expressions

1 Introduction

Automata have been widely studied and utilized for pattern and string matching
problems. A string automaton reads the symbols of an input string one at a time,
after which it accepts or rejects the string. But in certain instances, the order in
which the symbols appear is irrelevant.

For example, in a set of graphs, the edges incident to a node are unordered
and therefore their labels form a commutative language. Or, in natural language
processing, applications might arise in situations where a sentence is generated by
a context-free grammar subject to (hard or soft) order-independent constraints.
For example, in summarization, there might be an unordered set of facts that
must be included. Or, there might be a constraint that among the references to
a particular entity, exactly one is a full NP.

To handle these scenarios, we are interested in weighted automata and weighted
regular expressions for multisets. This paper makes three main contributions:

— We define a new translation from weighted multiset regular expressions to
weighted multiset automata, more direct than that of Chiang et al. [3] and
more compact (but less general) than that of Droste and Gastin [4].

— We discuss how to train weighted multiset automata and regular expressions
from data.

— We give a new composable representation of partial runs of weighted multiset
automata that is more efficient than that of Chiang et al. [3].

http://arxiv.org/abs/1806.03315v1

2 Definitions

We begin by defining weighted multiset automata (§2.2) and the related defini-
tions from previous papers for weighted multiset regular expressions (§2.3).

2.1 Preliminaries

For any natural number n, let [n] = {1,...,n}.

A multiset over a finite alphabet Y is a mapping from X' to Ny. For consis-
tency with standard notation for strings, we write a (where a € X) instead of
{a}, uv for the multiset union of multisets v and v, and € for the empty multiset.

The Kronecker product of a m X n matrix A and a p X ¢ matrix B is the
mp X ng matrix
AllB s AlmB
AeB=| @ -
Ay B - Apn B

If w is a string over X, we write alph(w) for the subset of symbols actually
used in w; similarly for alph(L) where L is a language. If |alph(L)| = 1, we say
that L is unary.

2.2 Weighted multiset automata

We formulate weighted automata in terms of matrices as follows. Let K be a
commutative semiring.

Definition 1. A K-weighted finite automaton (WFA) over X is a tuple M =
(Q, X, \, 1, p), where Q = [d] is a finite set of states, X is a finite alphabet,
A € K4 js a row vector of initial weights, p : X — K> assigns a transition
matriz to every symbol, and p € K41 is a column vector of final weights.

For brevity, we extend p to strings: If w € X*, then p(w) = p(wy) - p(wy,).
Then, the weight of all paths accepting w is M (w) = A u(w) p. Note that in this
paper we do not consider e-transitions. Note also that one unusual feature of our
definition is that it allows a WFA to have more than one initial state.

Definition 2. A K-weighted multiset finite automaton is one whose transi-
tion matrices commute pairwise. That is, for all a,b € X, we have u(a)u(b) =

u(b)u(a).
2.3 Weighted multiset regular expressions

This definition follows that of Chiang et al. [3], which in turn is a special case
of that of Droste and Gastin [4].

Definition 3. A K-weighted multiset regular expression over X' is an expression
belonging to the smallest set R(X) satisfying:

Ifa € X, then a € R(X).

— €€ R(D).

- P eRrR(X).

— Ifa,B € R(XY), then aU B € R(X).
— Ifa, B € R(X), then aff € R(X).

If o € R(X), then o* € R(X).
If a € R(XY) and k € K, then ka € R(X).

We define the language described by a regular expression, £(«), by analogy
with string regular expressions. Note that ¢ matches the empty multiset, while ()
does not match any multisets. Interspersing weights in regular expressions allows
regular expressions to describe weighted languages.

Definition 4. A multiset mc-reqular expression is one where in every subex-
pression o, a is:
— proper: € ¢ L(a), and

— monoalphabetic and connected: L(&) is unary.

As an example of why these restrictions are needed, consider the regular ex-
pression (ab)*. Since the symbols commute, this is equivalent to {a™b"}, which
multiset automata would not be able to recognize. From now on, we assume that
all multiset regular expressions are mc-regular and do not write “mc-.”

3 Matching Regular Expressions

In this section, we consider the problem of computing the weight that a multiset
regular expression assigns to a multiset. The bad news is that this problem is
NP-complete (§3.1). However, we can convert a multiset regular expression to a
multiset automaton (§3.2) and run the automaton.

3.1 NP-completeness

Theorem 1. The membership problem for multiset regular expressions is NP-
complete.

Proof. Define a transformation 7 from Boolean formulas in CNF over a set of
variables X to multiset regular expressions over the alphabet X U{Z | z € X }:

T(1V d2) =T(p1) UT(d2)

T (1 A d2) =T($1)T (¢2)
T(x)==x
T(-z) =1z

Given a formula ¢ in 3CNF, construct the multiset regular expression o = T (¢).
Let n be the number of clauses in ¢. Then form the expression

B=]]@"@ue"u(ue ")

Both a and S clearly have length linear in n. We claim that ¢ is satisfiable if
and only if L(af) contains w =[], 2"z".

(=) If ¢ is satisfiable, form a string u = uy - - - u,, as follows. For i = 1,...n, the
1th clause of ¢ has at least one literal made true by the satisfying assignment. If
it’s x, then u; = x; if it’s -, then u; = Z. Clearly, u € L(«). Next, form a string
v = [[, vz, where the v, are defined as follows. For each z, if x is true under
the assignment, then there are & > 0 occurrences of = in u and zero occurrences
of Z in u. Let v, = x" *z". Likewise, if x is false under the assignment, then
there are k > 0 occurrences of Z and zero occurrences of z, so let v, = zFz"F.
Clearly, uv = w and v € L(f).

(<) If w € L(ap), then there exist strings uv = w such that v € L(a) and
v € L(B). For each x, it must be the case that v contains either ™ or Z", so that
u must either not contain = or not contain Z. In the former case, let x be false;
in the latter case, let © be true. The result is a satisfying assignment for ¢. O

3.2 Conversion to multiset automata

Given a regular expression «, we can construct a finite multiset automaton cor-
responding to that regular expression. In addition to A, u(a), and p, we compute
Boolean matrices x(a) with the same dimensions as p(a). The interpretation of
these matrices is that whenever the automaton is in state ¢, then [k(a)]qq = 1
iff the automaton has not read an a yet.

If @ = a, then for all b # a:

A=[10] pla) = [8 1] rla) = [(1) 8] o m

If & = kay (where k € K), then for all a € X:

p(a) = pa(a) A=A p=kp1 K(a) = K(a).

If « = a3 Uag, then for all a € X :

o) = [] = el o= [0 e =[5 0]

If @« = ajas, then for all a € X:

p(a) = pi(a) ® k2(a) + 1 ® pa(a) A=A ® A
k(a) = k1(a) ® Ka(a) p=p1® pa.

If « = of and o is unary, then for all a € X' :

pla) = m(a) +prua(a) A= A p=p+A kla) =ri(a).

This construction can be explained intuitively as follows. The case @ = a is
standard. The union operation is standard except that the use of two initial states
makes for a simpler formulation. The shuffle product is similar to a conventional
shuffle product except for the use of k2. It builds an automaton whose states are
pairs of states of the automata for oy and as. The first term in the definition
of u(a) feeds a to the first automaton and the second term to the second; but it
can be fed to the first only if the second has not already read an a, as ensured by
k2(a). Finally, Kleene star adds a transition from final states to “second” states
(states that are reachable from the initial state by a single a-transition), while
also changing all initial states into final states.

Let A(a) denote the multiset automaton constructed from «. We can bound
the number of states of A(a) by 2/*l by induction on the structure of . For
a=¢ |A(a) =1 < 20l For a = a, |[A(a)] = 2 < 21°l For a = a1 Jax,
[A(e)] = [A(en)|+]A(a2)] < 211 For a = a0, |A(a)| = [A(e1)]|Aaz)] < 21,
For a = af, |A(a)| = |A(ay)| < 21°l.

3.3 Related work

Droste and Gastin [4] show how to perform regular operations for the more
general case of trace automata (automata on monoids). Our use of x resembles
their forward alphabet. Our construction does not utilize anything akin to their
backward alphabet, so that we allow outgoing edges from final states and we
allow initial states to be final states. Their construction, when converting aj,
creates m = |alph(aq)| simultaneous copies of A(ay), that is, it creates an
automaton with |A(ay)|™ states. Since our Kleene star is restricted to the unary
case, we can use the standard, much simpler, Kleene star construction [2].

Our construction is a modification of a construction from previous work [3].
Previously, the shuffle operation required alph(a;) and alph(as) to be disjoint; to
ensure this required some rearranging of the regular expression before converting
to an automaton. Our construction, while sharing the same upper bound on
the number of states, operates directly on the regular expression without any
preprocessing.

4 Learning Weights

Given a collection of multisets, the weights of the transition matrices and the
initial and final weights can be learned automatically from data. Given a multiset
w, we let pu(w) = [, p(w;). The probability of w over all possible multisets is

1
P(w) = Zu(w)p
Z = Z A (w')p.
multisets w’

We must restrict w’ to multisets up to a given length bound, which can be set
based on the size of the largest multiset which is reasonable to occur in the

particular setting of use. Without this restriction, the infinite sum for Z will
diverge in many cases. For example, if @ = a*, then p(a)” = u(a) and thus
A(a)p = Ap(a)™p. Since this value is non-zero, the sum diverges.

The goal is to minimize the negative log-likelihood given by

L=- Z log P(w).

wEdata

To this end, we envision and describe two unique scenarios for how the multiset
automata are formed.

4.1 Regular expressions

In certain circumstances, we may start with a set of rules as weighted regular
expressions and wish to learn the weights from data. Conversion from weighted
regular expressions to multiset automata can be done automatically, see Sec-
tion 3.2. Now the multiset automata that result already have commuting transi-
tion matrices. The weights from the weighted regular expression are the parame-
ters to be learned. These parameters can be learned through stochastic gradient
descent with the gradient computed through automatic differentiation, and the
transition matrices will retain their commutativity by design.

4.2 Finite automata

We can learn the weighted automaton entirely from data by starting with a fully
connected automaton on n nodes. All initial, transition, and final weights are
initialized randomly. Learning proceeds by gradient descent on the log-likelihood
with a penalty to encourage the transition matrices to commute. Thus our mod-
ified log-likelihood is

L'=L+a) (ua)ub) - pb)ua)
a,b

Over time we increase the penalty by increasing «. This method has the benefit
of allowing us to learn the entire structure of the automaton directly from data
without having to form rules as regular expressions. Additionally, since we set
n at the start, the number of states can be kept small and computationally
feasible. The main drawback of this method is that the transition matrices, while
penalized for not commuting, may not exactly satisfy the commuting condition.

5 Computing Inside Weights

We can compute the total weight of a multiset incrementally by starting with A
and multiplying by p(a) for each a in the multiset. But in some situations, we
might need to compose the weights of two partial runs. That is, having computed

p(u) and p(v), we want to compute p(uv) in the most efficient way. Sometimes
we also want to be able to compute p(u) 4+ p(v) in the most efficient way.

For example, if we divide w into parts u and v to compute p(u) and p(v)
in parallel [9], afterwards we need to compose them to form pu(w). Or, we could
intersect a context-free grammar with a multiset automaton, and parsing with
the CKY algorithm would involve multiplying and adding these weight matri-
ces. The recognition algorithm for extended DAG automata [3] uses multiset
automata in this way as well.

Let M be a multiset automaton and p(a) its transition matrices. Let us call
p(w) the matrix of inside weights of w. If stored in the obvious way, it takes
O(d?) space. If w = uv and we know p(u) and u(v), we can compute u(w) by
matrix multiplication in O(d®) time. Can we do better?

The set of all matrices pu(w) spans a module which we call Ins(M). We show
in this section that, under the right conditions, if M has d states, then Ins(M)
has a generating set of size d, so that we can represent p(w) as a vector of d
coefficients. We begin with the special case of unary languages (§5.1), then after
a brief digression to more general languages (§5.2), we consider multiset regular
expressions converted to multiset automata (§5.3).

5.1 Unary languages

Suppose that the automaton is unary, that is, over the alphabet X = {a}.
Throughout this section, we write u for p(a) for brevity.

Ring-weighted The inside weights of a string w = a™ are simply the matrix
1", and the inside weights of a set of strings is a polynomial in pu. We can take
this polynomial to be our representation of inside weights, if we can limit the
degree of the polynomial.

The Cayley-Hamilton theorem (CHT) says that any matrix x4 over a commu-
tative ring satisfies its own characteristic equation, det(A —) = 0, by substitut-
ing p for A. The left-hand side of this equation is the characteristic polynomial,;
its highest-degree term is A\%. So if we substitute u into the characteristic equa-
tion and solve for u?, we have a way of rewriting any polynomial in ;& of degree
d or more into a polynomial of degree less than d.

So representing the inside weights as a polynomial in p takes only O(d) space,
and addition takes O(d) time. Naive multiplication of polynomials takes O(d?)
time; fast Fourier transform can be used to speed this up to O(dlogd) time,
although d would have to be quite large to make this practical.

Semiring-weighted Some very commonly used weights do not form rings: for
example, the Boolean semiring, used for unweighted automata, and the Viterbi
semiring, used to find the highest-weight path for a string.

There is a version of CHT for semirings due to Rutherford [10]. In a ring,
the characteristic equation can be expressed using the sums of determinants of
principal minors of order r. Denote the sum of positive terms (even permutations)

as p, and sum of negative terms (odd permutations) as —g,. Then Rutherford
expresses the characteristic equation applicable for both rings and semirings as

N @A pa AT ga AT = AT AT s AT

For any K C N, let Sk be the set of all permutations of K, and let sgn(o) be
+1 for an even permutation and —1 for an odd permutation. The characteristic
polynomial is

SRS (10 RS | P

KC[d] TESK €K KC[d] TeSK €K
sgn(m)#(—1) | K] sgn(m)=(—1)| Kl

(1)

If we can ensure that the characteristic equation has just A% on the left-hand
side, then we have a compact representation for inside weights. The following
result characterizes the graphs for which this is true.

Theorem 2. Given a semiring-weighted directed graph G, the characteristic
equation of G’s adjacency matriz, given by the semiring version of CHT, has
only X\ on its left-hand side if and only if G does not have two node-disjoint
cycles.

Proof. Let K be a node-induced subgraph of the directed graph G. A linear
subgraph of K is a subgraph of K that contains all nodes in K and each node
has indegree and outdegree 1 within the subgraph, that is, a collection of directed
cycles such that each node in K occurs in exactly one cycle. Every permutation
7 of K corresponds to the linear subgraph of K containing edges (i, 7(i)) for
each i € K [6].

Note that sgn(m) = +1 iff the corresponding linear subgraph has an even
number of even-length cycles. Moreover, note that sgn(m) = (—1)/%! appearing
in (1) holds iff the corresponding linear subgraph has an even number of cycles
(of any length). So if the transition graph does not have two node-disjoint cycles,
the only nonzero term in (1) with sgn(r) = (—1)/¥l is that for which K = 0,
that is, A?. To prove the other direction, suppose that the graph does have two
node-disjoint cycles; then the linear subgraph containing just these two cycles
corresponds to a 7 that makes sgn(w) = (—1)I%1. O

The coefficients in (1) look difficult to compute; however, the product inside
the parentheses is zero unless the permutation 7 corresponds to a cycle in the
transition graph of the automaton. Given that we are interested in computing
this product on linear subgraphs, we are only concerned with simple cycles.
Using an algorithm by Johnson [8], all simple cycles in a directed graph can be
found in O((n+e€)(c+ 1)) with n = number of nodes, e = number of edges, and
¢ = number of simple cycles.

Theorem 3. A digraph D with no two disjoint dicycles has at most 211~ sim-
ple dicycles.

Proof. First, a theorem from Thomassen [11] limits the number of cases we
must consider. In the first case, one vertex, v, is contained in every cycle. If
we consider G\ {vs}, this is a directed acyclic graph (DAG) and thus there is a
partial order determined by reachability. This partial order determines the order
that vertices appear in any cycle in GG, which limits the number of simple cycles
to the number of choices for picking vertices to join vs in each cycle. This is a
binary choice on |V| — 1 vertices, thus 2/VI=1 possible cycles (see Figure 1).

In the second case, the graph contains a subgraph with 3 vertices with no
self loops, but all 6 other possible edges between them. If we let S be the set
of these three vertices, then G \ S has a partial order on it just as in the first
case. Additionally, for each s € S, there exists a partial order on G \ (S \ {s}),
and these uniquely determine the order of vertices in any cycle in G. While the
bound could be lowered, this is bounded above by 2/VI=1,

All other cases can be combined with the second case by observing that they
all start with the same graph as the second case, then modified by subdivision
(breaking an edge in two by inserting a vertex in the middle) or splitting (break-
ing a vertex in two, one with all in edges, one with all out edges, then adding
one edge from the in vertex to the out vertex). These cases do not violate the
arguments of the second case, nor add any additional cycles. Intuitively, these
are graphs from case two with some edge(s) deleted. a

olVI-1

Fig. 1. A directed graph achieving the simple cycle bound.

5.2 Digression: Binary languages and beyond

If X has two symbols and the transition matrices are commuting matrices over
a field, then inside weights can still be represented in d dimensions [5]. We give
only a brief sketch here of the simpler, algebraically closed case [1].

Given a matrix M with entries in an algebraically closed field, there exists a
matrix S such that S™'MS is in Jordan form. A matrix in Jordan form has the
following block structure. Each A; is a square matrix and \; is an eigenvalue.

A 1 0
Ay 0

STIMS = A; =

Let the number of rows in A; be k;. Here let M = p(a) be one of the commuting
transition matrices. Then the following matrices span the algebra generated by
the commuting transition matrices pu(a) and p(b):

L ala), . pla)
p(b), p(@)u(b), .., (@)=~ pu(b),

p®)P~, p(@)u(d) =1, pa) ()P

The number of matrices in this span is equal to the dimension of p(a) and u(b),
which in our case is d. Further, a basis for the algebra is contained within this
span. Therefore the inside weights can be represented in d dimensions.

On the other hand, if the weights come from a ring, the above fact does
not hold in general [7]. Going beyond binary languages, if X' has four or more
symbols, then inside weights might need as many as [d?/4]+1 dimensions, which
is not much of an improvement [5] . The case of three symbols remains open [7].

Fig. 2. Example commutative automaton whose inside weights require storing more
than d values.

5.3 Regular expressions

Based on the above results, we might not be optimistic about efficiently rep-
resenting inside weights for languages other than unary languages. But in this
subsection, we show that for multiset automata converted from multiset regular
expressions, we can still represent inside weights using only d coefficients. We
show this inductively on the structure of the regular expression.

First, we need some properties of the matrices x(a).

Lemma 1. If u(a) and k(a) are constructed from a multiset reqular expression,
then

1. k(a)k(a) = k(a).

2. k(a)k(b) = k(b)k(a)

3. p(a)k(a) = 0.

4+ nla)s(®) = s(Bu(a) if a £

To show that Ins(M) can be expressed in d dimensions, we will need to prove
an additional property about the structure of Ins(M). Note that if Ins(M) is not
a free-module, then dim Ins(M) is the size of the generating set we construct.

Theorem 4. If M is a ring-weighted multiset automaton with d states converted
from a regular expression, then

1. dimIns(M) = d.

2. Ins(M) can be decomposed into a direct sum

Ins(M) = @B Insa(M)
ACY

where p(w) € Insa (M) iff alph(w) = A.

Proof. By induction on the structure of the regular expression a.

If a is unary: the Cayley-Hamilton theorem gives a generating set
{I,u(a),...,u(a)?1}, which has size d. Moreover, let Insy(M) be the span of
{I} and Insg,y (M) be the span of the p(a)® (i > 0). The automaton M, by
construction, has a state (the initial state) with no incoming transitions. That
is, its transition matrix has a zero column, which means that its characteristic
polynomial has no I term. Therefore, if w # €, p(w) € Insg,y (M).

If & = kay, then Ins(M) = Ins(M;), so both properties hold of Ins(M) if
they hold of Ins(M7).

If @ = a3 U as, the inside weights of M7 U M, for w are

u(w) = [T w0 =1] [Mléa) ,u;ga)] - [Ha lél(a) I1. Bz(a)] B [Ml(()w) uz(()w)] '

acw a

Thus, Ins(M) =2 Ins(M;)®Ins(Ms), and dim Ins(M) = dim Ins(M7)+dim Ins(Ms).
Moreover, Insa(M) 22 Insa(M1) @ Insa(Ma).
If @ = aj g, the inside weights of M7 W My for w are

p(w) = H p(a) = H (11(a) ® K2(a) + 1 @ pa(a))

= (H pi(a) ® [T ra(a) I ”2(“)>
= Z pa(u) @ kz(u)pe(v)

where we have used Lemma 1 and properties of the Kronecker product. Let {e;}
and {f;} be a generating set for Ins(M;) and Ins(Ms), respectively. Then the
above can be written as a linear combination of terms of the form e; ® xa(u) f;.
We take these as a generating set for Ins(M). Although it may seem that there
are too many generators, note that if both pi(u) and pi(u’) depend on e,
they belong to the same submodule and therefore use the same symbols, so
ko(u) = ka(u') (Lemma 1.1). Therefore, the e; ® ka(u)f; form a generating set
of size dim Ins(M) - dim Ins(Ms).

Moreover, let Ins o (M) be the submodule spanned by all the p1 (u)®k2(u)pe (v)
such that alph(uv) = A. O

6 Conclusion

We have examined weighted multiset automata, showing how to construct them
from weighted regular expressions, how to learn weights automatically from data,
and how, in certain cases, inside weights can be computed more efficiently in
terms of both time and space complexity. We leave implementation and appli-
cation of these methods for future work.

Acknowledgements

We would like to thank the anonymous reviewers for their very detailed and
helpful comments.

This research is based upon work supported by the Office of the Director of
National Intelligence (ODNI), Intelligence Advanced Research Projects Activity
(IARPA), via AFRL Contract #FA8650-17-C-9116. The views and conclusions
contained herein are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements, either expressed or
implied, of the ODNI, TARPA, or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon.

References

1. Barria, J., Halmos, P.R.: Vector bases for two commuting matrices. Linear and
Multilinear Algebra 27, 147-157 (1990)

2. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret-
ical computer science 48, 117-126 (1986)

3. Chiang, D., Drewes, F., Lopez, A., Satta, G.: Weighted DAG automata for semantic
graphs. Computational Linguistics (2018), to appear

4. Droste, M., Gastin, P.: The Kleene-Schiitzenberger theorem for formal power series
in partially commuting variables. Information and Computation 153, 47-80 (1999)

5. Gerstenhaber, M.: On dominance and varieties of commuting matrices. Annals of
Mathematics 73(2), 324-348 (1961)

6. Harary, F.: The determinant of the adjacency matrix of a graph. STAM Review
4(3), 202-210 (1962)

7. Holbrook, J., O’'Meara, K.C.: Some thoughts on Gerstenhaber’s theorem. Linear
Algebra and its Applications 466, 267—295 (2015)

8. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM Jour-
nal on Computing 4(1), 77-84 (1975)

9. Ladner, R.E., Fischer, M.J.: Parallel prefix computation. Journal of the ACM
(JACM) 27(4), 831-838 (1980)

10. Rutherford, D.E.: The Cayley-Hamilton theorem for semi-rings. Proc. Royal Soci-
ety of Edinburgh 66(4), 211-215 (1964)

11. Thomassen, C.: On digraphs with no two disjoint directed cycles. Combinatorica
7(1), 145-150 (1987)

	Algorithms and Training for Weighted Multiset Automata and Regular Expressions

