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Techniques are developed for creating new and general language families of only semi-
linear languages, and for showing families only contain semilinear languages. It is shown
that for language families L that are semilinear full trios, the smallest full AFL contain-
ing L that is also closed under intersection with languages in NCM (where NCM is the
family of languages accepted by NFAs augmented with reversal-bounded counters), is
also semilinear. If these closure properties are effective, this also immediately implies de-
cidability of membership, emptiness, and infiniteness for these general families. From the
general techniques, new grammar systems are given that are extensions of well-known
families of semilinear full trios, whereby it is implied that these extensions must only
describe semilinear languages. This also implies positive decidability properties for the
new systems. Some characterizations of the new families are also given.

Keywords: semilinearity; closure properties; counter machines; pushdown automata; de-
cidability.

1. Introduction

One-way nondeterministic reversal-bounded multicounter machines (NCM) operate

like NFAs with λ transitions, where there are some number of stores that each can

contain some non-negative integer. The transition function can detect whether each

counter is zero or non-zero, and optionally increment or decrement each counter;

however, there is a bound on the number of changes each counter can make between

non-decreasing and non-increasing. These machines have been extensively studied

in the literature, for example in [19], where it was shown that NCMs only accept
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semilinear languages (defined in Section 2). As the semilinear property is effec-

tive for NCM (in that, the proof consists of an algorithm for constructing a finite

representation of the semilinear sets), this implies that NCMs have decidable mem-

bership, emptiness, and infiniteness properties, as emptiness and infiniteness can be

decided easily on semilinear sets (and membership follows from emptiness by effec-

tive closure under intersection with regular languages). NCM machines have been

applied extensively in the literature, for example, to model checking and verification

[25, 20, 26, 21], often using the positive decidability properties of the family.

More general machine models have been studied with an unrestricted pushdown

automaton augmented by some number of reversal-bounded counters (NPCM, [19]).

Despite the unrestricted pushdown, the languages accepted are all semilinear, im-

plying they have the same decidable properties. This family too has been applied to

several verification problems [5, 22], including model checking recursive programs

with numeric data types [12], synchronization- and reversal-bounded analysis of

multithreaded programs [10], for showing decidable properties of models of integer-

manipulating programs with recursive parallelism [11], and for decidability of prob-

lems on commutativity [23]. In these papers, the positive decidability properties —

the result of the semilinearity — plus the use of the main store (the pushdown), plus

the counters, played a key role. Hence, (effective) semilinearity is a crucial property

for families of languages.

The ability to augment a machine model with reversal-bounded counters and to

only accept semilinear languages is not unique to pushdown automata; in [13], it

was found that many classes of machines M accepting semilinear languages could

be augmented with reversal-bounded counters, and the resulting family Mc would

also only accept semilinear languages. This includes models such as Turing machines

with a one-way read-only input tape and a finite-crossinga worktape. However, a

precise formulation of which classes of machines this pertains to was not given.

Here, a precise formulation of families of languages that can be “augmented”

with counters will be examined in terms of closure properties rather than machine

models. This allows for application to families described by machine models, or

grammatical models. It is shown that for any full trio (a family closed under ho-

momorphism, inverse homomorphism, and intersection with regular languages) of

semilinear languages L0, then the smallest full AFL L (a full trio also closed under

union, concatenation, and Kleene-*) containing L0 that is closed under intersection

with languages in NCM, must only contain semilinear languages. Furthermore, if

the closure properties and semilinearity are effective in L0, this implies a decid-

able membership, emptiness, and infiniteness problem in L. Hence, this provides

a new method for creating general families of languages with positive decidability

properties.

Several specific models are created by adding counters. For example, indexed

aA worktape is finite-crossing if there is a bound on the number of times the boundary of all
neighboring cells on the worktape are crossed.
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grammars are a well-studied general grammatical model like context-free grammars

except where nonterminals keep stacks of “indices”. Although this system can gen-

erate non-semilinear languages, linear indexed grammars (indexed grammars with

at most one nonterminal in the right hand side of every production) generate only

semilinear languages [6]. Here, we define linear indexed grammars with counters,

akin to linear indexed grammars, where every sentential form contains the usual

sentential form, plus k counter values; each production operates as usual and can

also optionally increase each counter by some amount; and a terminal word can be

generated only if it can be produced with all counter values equal. It is shown that

the family of languages generated must be semilinear since it is contained in the

smallest full AFL containing the intersection of linear indexed languages and NCM

languages. A characterization is also shown: linear indexed grammars with counters

generate exactly those languages obtained by intersecting a linear indexed language

with an NCM and then applying a homomorphism. Furthermore, it is shown that

right linear indexed grammars (where terminals only appear to the left of nontermi-

nals in productions) with counters coincide exactly with the machine model NPCM.

Therefore, linear indexed grammars with counters are a natural generalization of

NPCM containing only semilinear languages. This model is generalized once again

as follows: an indexed grammar is uncontrolled finite-index if, there is a value k such

that, for every derivation in the grammar, there are at most k occurrences of non-

terminals in every sentential form. It is known that every uncontrolled finite-index

indexed grammar generates only semilinear languages [3, 31]. It is shown here that

uncontrolled finite-index indexed grammars with counters generate only semilinear

languages, which is also a natural generalization of both linear indexed grammars

with counters and NPCM. This immediately shows decidability of membership,

emptiness, and infiniteness for this family.

Lastly, the closure property theoretic method of adding counters is found to often

be more helpful than the machine model method of [13] in terms of determining

whether the resulting family is semilinear, as here a machine model M is constructed

such that the language family accepted by M is a semilinear full trio, but adding

counters to the model to create Mc accepts non-semilinear languages. This implies

from our earlier results, that Mc can accept languages that cannot be obtained from

any accepted by M by allowing any number of intersections with NCMs combined

with any of the full AFL operations.

This paper therefore contains useful new techniques for creating new language

families, and for showing existing language families only contain semilinear lan-

guages, which can then be used to immediately obtain decidable emptiness, mem-

bership, and infiniteness problems. Such families can perhaps also be applied to

various areas, such as to verification, similarly to the use of NPCM. A preliminary

version of this paper appeared in [18]. This version includes all missing proofs omit-

ted due to space constraints, and the new Proposition 4 which allows for some of

the other proposition statements to be more general. Section 5 is also new.
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2. Preliminaries

In this section, preliminary background and notation is given.

Let N0 be the set of non-negative integers, and let Nk
0 be the set of all k-tuples of

non-negative integers. A set Q ⊆ Nk
0 is linear if there exists vectors ~v0, ~v1, . . . , ~vl ∈

Nk
0 such that Q = { ~v0 + i1 ~v1 + · · · + il~vl | i1, . . . , il ∈ N0}. Here, ~v0 is called the

constant, and ~v1, . . . , ~vl are called the periods. A set Q is called semilinear if it is a

finite union of linear sets.

Introductory knowledge of formal language and automata theory is assumed such

as nondeterministic finite automata (NFAs), pushdown automata (NPDAs), Turing

machines, and closure properties [16]. An alphabet Σ is a finite set of symbols, a

word w over Σ is a finite sequence of symbols from Σ, and Σ∗ is the set of all words

over Σ which includes the empty word λ. A language L over Σ is any L ⊆ Σ∗. The

complement of a language L ⊆ Σ∗, denoted by L, is Σ∗ − L.

Given a word w ∈ Σ∗, the length of w is denoted by |w|. For a ∈ Σ, the number of

a’s in w is denoted by |w|a. Given a word w over an alphabet Σ = {a1, . . . , ak}, the

Parikh image of w is ψ(w) = (|w|a1
, . . . , |w|ak

), and the Parikh image of a language

L is {ψ(w) | w ∈ L}. The commutative closure of a language L is the language

comm(L) = {w ∈ Σ∗ | ψ(w) = ψ(v), v ∈ L}. Two languages are letter-equivalent if

ψ(L1) = ψ(L2).

A language L is semilinear if ψ(L) is a semilinear set. Equivalently, a language

is semilinear if and only if it is letter-equivalent to some regular language [14]. A

family of languages is semilinear if all languages in it are semilinear, and it is said

to be effectively semilinear if there is an algorithm to construct the constant and

periods for each linear set from a representation of each language in the family. For

example, it is well-known that all context-free languages are effectively semilinear

[28].

We will only define NCM and NPCM informally here, and refer to [19] for a formal

definition. A one-way nondeterministic counter machine can be defined equivalently

to a one-way nondeterministic pushdown automaton [16] with only a bottom-of-

pushdown marker plus one other symbol. Hence, the machine can add to the counter

(by pushing), subtract from the counter (by popping), and can detect emptiness and

non-emptiness of the pushdown. A k-counter machine has k independent counters. A

k-counter machine M is l-reversal-bounded, if M makes at most l changes between

non-decreasing and non-increasing of each counter in every accepting computation.

Let NCM be the class of one-way nondeterministic l-reversal-bounded k-counter

machines, for some k, l (DCM for deterministic machines). Let NPCM be the class

of machines with one unrestricted pushdown plus some number of reversal-bounded

counters. By a slight abuse of notation, we also use these names for the family of

languages they accept.

Notation from AFL (abstract families of languages) theory is used from [7]. A full

trio is any family of languages closed under homomorphism, inverse homomorphism,

and intersection with regular languages. Furthermore, a full AFL is a full trio closed
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under union, concatenation, and Kleene-*. Given a language family L, the smallest

family containing L that is closed under arbitrary homomorphism is denoted by

Ĥ(L), the smallest full trio containing L is denoted by T̂ (L), and the smallest full

AFL containing L is denoted by F̂(L). Given families L1 and L2, let L1 ∧ L2 =

{L1 ∩ L2 | L1 ∈ L1, L2 ∈ L2}. We denote by F̂NCM(L) the smallest full AFL

containing L that is closed under intersection with languages from NCM.

3. Full AFLs Containing Counter Languages

This section will start by showing that for every semilinear full trio L, the smallest

full AFL containing L that is also closed under intersection with NCM is a semilinear

full AFL (Proposition 4). First, an intermediate result is required.

Proposition 1. If L is a semilinear full trio, then T̂ (L∧NCM) = Ĥ(L∧NCM) is

a semilinear full trio.

Proof. Let C = T̂ (L ∧ NCM), and let L̂ ∈ C over alphabet Γ = {d1, . . . , ds}.

By definition, C is a full trio. It will be shown that L̂ is semilinear. Then L̂

can be obtained from a language L in L ∧ NCM via a finite sequence of opera-

tions involving homomorphisms, inverse homomorphisms, and intersections with

regular sets. Theorem 3.2.3 of [7] shows that for all non-empty languages L,

T̂ (L) = {g2(g
−1
1 (L) ∩ R1) | R1 is regular, g1, g2 are decreasing homomorphisms}.

A homomorphism g is decreasing if and only if |g(a)| ≤ 1, for all letters a. Such

homomorphisms are called weak codings. Hence, it is enough to consider that L̂ is

obtained from L via the following sequence: an application of an inverse weak coding

homomorphism g1, followed by an intersection with a regular language R1, followed

by an application of a weak coding homomorphism g2. Thus, L̂ = g2(g
−1
1 (L)∩R1).

Since L is in L ∧ NCM, there are L1 ∈ L and L2 ∈ NCM such that L = L1 ∩ L2.

Let L2 be accepted by a k-counter reversal-bounded NCM M2, where, without loss

of generality, all counters are 1-reversal-bounded [19], all counters increase at least

once, and all counters decrease to zero before accepting.

Let Σ = {a1, . . . , an} be the alphabet of L1 ∪ L2, and so L,L1, L2 ⊆ Σ∗, g1 is

from Σ̄∗ to Σ∗ for some alphabet Σ̄, and so g−1
1 (L) ⊆ Σ̄∗, R1 ⊆ Σ̄∗, and g2 is from

Σ̄∗ to Γ∗. Introduce new symbols ∆ = {C1, D1, . . . , Ck, Dk} (k is the number of

counters).

Let hΣ be a homomorphism from (Σ ∪ ∆)∗ to Σ∗ that fixes each letter of Σ

and erases all letters of ∆, and let hΣ̄ be a homomorphism (Σ̄ ∪ ∆)∗ to Σ̄∗ that

fixes each letter of Σ̄ and erases all letters of ∆. There exists R2 ⊆ (Σ ∪ ∆)∗, a

regular set, accepted by a nondeterministic finite automaton M ′

2 that “encodes” the

computation of M2 (without doing the counting), as follows:

• M ′

2 switches states as in M2; M
′

2 starts by simulating transitions on each

counter being zero;

• every time M2 adds to counter i, M ′

2 instead reads the input letter Ci; this
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is forced to happen at least once for each i, and after it reads the first Ci,

it simulates transitions of M2 where counter i is positive;

• every time M2 subtracts from counter i, M ′

2 reads Di; M
′

2 verifies that at

least one Di is read, and that no Ci is read afterwards;

• for each i, 1 ≤ i ≤ k, at some nondeterministically guessed spot after

reading some Di symbol, M ′

2 guesses that counter i has hit zero, and it

no longer reads any Di symbol and simulates only transitions on counter i

being zero;

• M ′

2 must end in a final state.

Let L′ = h−1

Σ
(L1) ∩ R2 (here, h−1

Σ
(L1) has symbols of ∆ “shuffled in” to L1).

Let L′′ be those words in L′ with the same number of Ci’s as Di’s, for each i. Then

it is evident that hΣ(L
′′) = L as the NFA M ′

2 that accepts R2 is behaving like M2

but without counting; however the counting is occurring using the intersection in

L′′, and then the counter symbols of ∆ are erased with hΣ. But looking only at L′,

it must be that L′ ∈ L since L is a full trio. Let ḡ1 be the extension of g1 to be a

homomorphism from (Σ̄ ∪ ∆)∗ to (Σ ∪ ∆)∗, where each letter of ∆ is mapped to

itself, and let ḡ2 be the extension of g2 to be a homomorphism from (Σ̄ ∪ ∆)∗ to

(Γ ∪∆)∗, where each letter of ∆ is mapped to itself. Let R′

1 = h−1

Σ̄
(R1); that is, it

has symbols of ∆∗ “shuffled in”. Note that R′

1 is regular since the regular languages

are closed under inverse homomorphism.

Then L′′′ = ḡ2(ḡ1
−1(L′) ∩ R′

1), which is also in L, over (Γ ∪ ∆)∗. Note that

since g1 is a weak coding homomorphism, ḡ1 is as well, and therefore ḡ1
−1 simply

operates as g−1
1 does while fixing all letters of ∆. If we then take L′′′ and intersect

it with all words where the number of Ci’s is equal to the number of Di’s for each i,

and then erase all Ci’s and Di’s, we obtain L̂. Let the Parikh image order the letters

of this alphabet d1, . . . , ds, C1, D1, . . . , Ck, Dk. This Parikh image of L′′′ gives a set

Q′′′ ⊆ Ns+2k
0 , which is semilinear since L is semilinear. Let Q′′′′ be the set obtained

from Q′′′ by enforcing that the number of Ci’s is equal to Di’s for each i, which is

also semilinear since the intersection of two semilinear sets is again semilinear [8].

Then Q̄, the set obtained from Q′′′′ by projection on the first s coordinates, is also

semilinear and this is the Parikh image of L̂. Hence, L̂ is semilinear.

By definition, Ĥ(L∧NCM) ⊆ T̂ (L∧NCM). To show T̂ (L∧NCM) ⊆ Ĥ(L∧NCM),

let L̂ ∈ T̂ (L ∧ NCM). Using the proof that T̂ (L ∧ NCM) is semilinear above, from

L′′′ ∈ L, it is possible to then intersect this language with an NCM that verifies

that the number of Ci’s is equal to the number of Di’s, for each i. And then, a

homomorphism that erases elements of ∆ can be applied to obtain L̂.

The next result is relatively straightforward from results in [7, 9], however we

have not seen it explicitly stated as we have done. From Corollary 2, Section 3.4 of

[7], for any full trio L, the smallest full AFL containing L is the substitution of the

regular languages into L. And from [9], the substitution closure of one semilinear

family into another is semilinear. Therefore, we obtain:
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Lemma 2. If L is a semilinear full trio, then F̂(L) is semilinear.

For semilinear full trios L, T̂ (L ∧ NCM) is a semilinear full trio by Proposition

1, and starting with this family and applying Lemma 2, the smallest full AFL

containing intersections of languages in L with NCM is semilinear.

Proposition 3. If L is a semilinear full trio, then F̂(L ∧ NCM) is semilinear.

It is worth noting that this procedure can be iterated, as therefore F̂(F̂(L∧NCM)∧

NCM) must also be a semilinear full AFL, etc. for additional levels. However, it is

an interesting open question as to whether there is a strict hierarchy with respect

to this iteration.

One could also consider the smallest full AFL containing L that is closed under

intersection with NCM. Here, the intersections with NCM can occur arbitrarily many

times, even after or in between applying the other full AFL operations.

Proposition 4. If L is a semilinear full trio, then F̂NCM(L) is semilinear.

Proof. Let L̂ ∈ F̂NCM(L). Then L̂ is obtained from some language L ∈ L via some

sequence of the full AFL operations, plus some number, n say, of intersections with

NCMs. Hence,

L̂ ∈ C =

n
︷ ︸︸ ︷

F̂(F̂(· · · F̂(L ∧

n
︷ ︸︸ ︷

NCM) ∧ NCM) ∧ · · · ∧ NCM).

By iterating Proposition 3 n times, C is semilinear, hence L̂ is semilinear.

In contrast, it is shown in [7] that Ĥ(F̂({anbn | n > 0})∧ F̂({anbn | n > 0})) is

equal to the family of recursively enumerable languages. Therefore, Ĥ(F̂(NCM) ∧

F̂(NCM)) is also equal to the family of recursively enumerable languages (which is

not semilinear). But in Propostion 4, only intersections with languages in NCMs

are allowed, and not intersections with languages in F̂(NCM), thereby creating the

large difference.

Many acceptor and grammar systems are known to be semilinear full trios, such

as finite-index ET0L systems [29], indexed grammars with a bound on the number

of variables appearing in every sentential form (called uncontrolled finite-index) [3],

multi-push-down machines (which have k pushdowns that can simultaneously be

written to, but they can only pop from the first non-empty pushdown) [2], a Turing

machine variant with one finite-crossing worktape [13], and pushdown machines

that can flip their pushdown up to k times [15].

Corollary 5. Let L be any of the following families:

• languages generated by context-free grammars,

• languages generated by finite-index ET0L,

• languages generated by uncontrolled finite-index indexed languages,

• languages accepted by one-way multi-push-down machine languages,
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• languages accepted by one-way read-only input nondeterministic Turing ma-

chines with a two-way finite-crossing read/write worktape,

• languages accepted by one-way k-flip pushdown automata.

Then F̂NCM(L) is a semilinear full AFL.

A simplified analogue to this result is known for certain types of machines [13],

although the new result here is defined entirely using closure properties rather than

machines. Furthermore, the results in [13] do not allow Kleene-* type closure as

part of the full AFL properties. For the machine models T above, it is an easy

exercise to show that augmenting them with reversal-bounded counters to produce

Tc, the languages accepted by Tc are a subset of the smallest full AFL closed under

intersection with NCM containing languages in T . Hence, these models augmented

by counters only accept semilinear languages. Similarly, this type of technique also

works for grammar systems, as we will see in Section 6.

In addition, in [9], it was shown that if L is a semilinear family, then the smallest

AFL containing the commutative closure of languages in L is a semilinear AFL. It

is known that the commutative closure of every semilinear language is in NCM [23],

and we know now that if we have a semilinear full trio L, then the smallest full

AFL containing L is also semilinear. So, we obtain an alternate proof that is an

immediate corollary since we know that the smallest full AFL containing NCM is a

semilinear full AFL.

For any semilinear full trio L where the semilinearity and the intersection with

regular language properties are effective, the membership and emptiness problems

in L are decidable. Indeed, to decide emptiness, it suffices to check if the semilinear

set is empty. And to decide if a word w is in L, one constructs the language L∩{w},

then emptiness is decided.

Corollary 6. For any semilinear full trio L where the semilinearity and intersec-

tion with regular language properties are effective, then the membership, emptiness,

and infiniteness problems are decidable for languages in F̂NCM(L). In these cases,

F̂NCM(L) are a proper subset of the recursive languages.

As membership is decidable, the family must only contain recursive languages, and

the inclusion must be strict as the recursive languages are not closed under homo-

morphism.

As another consequence, we provide an interesting decomposition theorem of

semilinear languages into linear parts. Consider any semilinear language L, where its

Parikh image is a finite union of linear sets A1, . . . , Ak, and the constant and periods

for each linear set can be constructed. Then we can effectively create languages in

perhaps another semilinear full trio separately accepting those words in Li = {w ∈

L | ψ(w) ∈ Ai}, for each 1 ≤ i ≤ k.

Proposition 7. Let L be a semilinear full trio, where semilinearity is effective.

Given L ∈ L, we can determine representations of disjoint simple sets (ie. disjoint
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linear sets where the periods form a basis) A1, . . . , Ak such that the Parikh image of

L is A = A1 ∪ · · · ∪ Ak, and Li = {w ∈ L | ψ(w) ∈ Ai} ∈ F̂NCM(L), for 1 ≤ i ≤ k.

Proof. Since semilinearity is effective, we can construct a representation of linear

sets A1, . . . , Ak. Moreover, it is known that given any set of constants and periods

generating a semilinear set Q, it is possible to effectively construct another set of

constants and periods that forms a disjoint finite union of simple sets also generating

Q [4, 30]. Therefore, we can assume A1, . . . , Ak are of this form. An NCM Mi can

be created to accept ψ−1(Ai), for each i, 1 ≤ i ≤ k as follows: if L ⊆ {a1, . . . , an}
∗,

then Mi has n counters. If (x1, . . . , xn) is the constant of Ai, then Mi adds xj to

counter j for each j. Then, for each period, (y1, . . . , yn), Mi nondeterministically

guesses some number c and adds cyj to counter j for each j. At this point, the

counters can contain any value from Ai. From here, for every aj read as input, Mi

subtracts one from counter j, and accepts at the end of the input if all counters are

empty. Hence, Li = L ∩ L(Mi) ∈ F̂NCM(L), for each i, 1 ≤ i ≤ k.

Therefore, by moving to a more general full trio (contained in the recursive

languages), it is possible to decompose a language into separate (disjoint) languages

such that each has one of the linear sets as its Parikh image.

4. Application to General Multi-Store Machine Models

In [7], a generalized type of multitape automata was studied, called multitape ab-

stract families of automata (multitape AFAs). We will not define the notation used

there, but in Theorem 4.6.1 (and Exercise 4.6.3), it is shown that if we have two types

of automata M1 and M2 (defined using the AFA formalism), accepting language

families L1 and L2 respectively, then the languages accepted by automata com-

bining together the stores of M1 and M2, accepts exactly the family Ĥ(L1 ∧ L2).

This is shown for machines accepting full AFLs in Theorem 4.6.1 of [7], and for

union-closed full trios mentioned in Exercise 4.6.3. We will show that this is tightly

coupled with this precise definition of AFAs, as we will define two simple types of

automata where each on their own accept a semilinear family, but combining the

two stores together to form one multitape model accepts non-semilinear languages.

Given a family of one-way acceptors M, let Mc be those acceptors augmented

by reversal-bounded counters. A checking stack automaton (NCSA) M is a one-way

NFA with a store tape, called a stack. At each move, M pushes a string (possibly

λ) on the stack, but M cannot pop. And, M can enter and read from the inside of

the stack in a two-way read-only fashion. But once the machine enters the stack,

it can no longer change the contents. The checking stack automaton is said to be

restricted (or no-read using the terminology of [24]), if it does not read from the

inside of the stack until the end of the input. We denote by RNCSA the family of

machines, as well as the family of languages described by the machines above. A

preliminary investigation of RNCSAc was done in [24].

Here, we will show the following:
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(1) RNCSA is a full trio of semilinear languages equal to the regular languages,

(2) F̂(RNCSA ∧ NCM) and F̂NCM(RNCSA) are semilinear full AFLs,

(3) every language in RNCSA∧NCM is accepted by some machine in RNCSAc,

(4) there are non-semilinear languages accepted by machines in RNCSAc.

Therefore, RNCSAc contains some languages not in the smallest full AFL containing

RNCSA closed under intersection with NCM, and the multitape automata and results

from [7] and [13] do not apply to this type of automata.

Proposition 8. RNCSA accepts exactly the regular languages, which is a full trio

of semilinear languages.

Proof. It is clear that all regular languages are in RNCSA. For the other direction,

take an RNCSA machine M , and assume without loss of generality that the input

alphabet Σ and the stack alphabet Γ are disjoint. Construct a two-way NFA (2NFA)

M ′ over (Σ ∪ Γ)∗ whose input is divided into segments u1v1 · · ·unvn, where ui ∈

(Σ ∪ {λ}) and vi ∈ Γ∗. M ′ simulates M by first verifying that M , when reading

ui, writes vi on the stack. When M ′ simulates the two-way read-only phase of M

(which only occurs in M after reaching the end of the input), it does so by using the

two-way NFA and skipping over the segments of Σ. Since this language accepted

by the 2NFA M ′ is regular, the language obtained by erasing all letters of Γ via

homomorphism is also regular, which is exactly L(M).

From Proposition 3, the following is true:

Corollary 9. F̂(RNCSA ∧ NCM) = F̂NCM(RNCSA) = F̂(NCM) is a semilinear full

AFL.

Since RNCSA is equal to the family of regular languages, and NCM is closed

under intersection with regular languages, the following is true:

Proposition 10. F̂NCM(RNCSA) = NCM ( RNCSAc. Furthermore, the latter fam-

ily contains non-semilinear languages.

Proof. Containment is immediate since RNCSAc has reversal-bounded counters.

The non-semilinear L = {aibj | i, j ≥ 1, j is divisible by i} can be accepted by an

RDCSAc M with one counter that makes only one reversal. M , on input x checks

that x = aibj for some i, j ≥ 1, copies ai onto the stack, and increments the counter

to j. Then M makes multiple left-to-right and right-to-left sweeps on ai with the

stack while in parallel decrementing the counter to check that j is divisible by i.

It is concluded that RNCSAc contains some languages not in F̂NCM(RNCSA) =

NCM, since NCM is semilinear. Then it is clear that combining together the stores

of RNCSA and NCM accepts significantly more than Ĥ(RNCSA ∧ NCM) as is the

case for multitape AFA [7]. The reason for the discrepancy between this result and

Ginsburg’s result is that the definition of multitape AFA allows for reading the
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input while performing instructions (like operating in two-way read-only mode in

the stack). In contrast, RNCSA does not allow this behavior. And if this behavior is

added into the definition, the full capability of checking stack automata is achieved

which accepts non-semilinear languages.

A similar analysis can be done using the method developed in [13] for augmenting

the machine models with counters. Let M be a family of one-way acceptors with

some type of store structure X . For example, if the storage X is a pushdown stack,

then M is the family of nondeterministic pushdown automata (NPDAs). In [13],

the following was shown for many families M:

(*) If M is a semilinear family (i.e, the languages accepted by the machines in

M have a semilinear Parikh image), then Mc is also a semilinear family.

It was not clear in [13] whether the result above is true for all types of one-way

acceptors, in general or for which types (*) holds. However, the family RNCSA

(equal to the regular languages) is semilinear (Proposition 8), but RDCSAc is not

semilinear (Proposition 10).

5. Properties of semilinear language families

This section investigates certain properties of semilinear language families.

Definition 11. Given a language family L, define the following families:

L = {L | L ∈ L},

LD = {L1 − L2 | L1, L2 ∈ L},

L∪ = {L1 ∪ L2 | L1, L2 ∈ L},

L∩ = {L1 ∩ L2 | L1, L2 ∈ L},

LL = {L1L2 | L1, L2 ∈ L},

L∗ = {L∗ | L ∈ L},

LRQ = {L1L
−1
2 | L1, L2 ∈ L}, (right quotient),

LLQ = {L−1
1 L2 | L1, L2 ∈ L}, (left quotient),

H(L) = {h(L) | L ∈ L, h a homomorphism},

H−1(L) = {h−1(L) | L ∈ L, h a homomorphism}.

If L is semilinear, an interesting question is whether the defined families above

must also be semilinear. In [9], it is shown that the substitution of one semilinear

family into another is again semilinear. This immediately implies that if L is a

semilinear family, then all of L∗,L∪,LL, and H(L) are also semilinear. For the

remaining properties, we have not seen proofs in the literature, and therefore include

short proofs here.

Proposition 12. If L is semilinear, then all of the following need not be semilinear:

L,LD,LRQ,LLQ,L∩,H
−1(L).
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Proof. First, it will be shown for L. Let L = {a1#a2# · · ·#ak# | k ≥ 1} where a

is a letter. Then the complement of L, L can easily be accepted by an NCM with

one 1-reversal counter which, when given an input w, nondeterministically selects

(1) or (2) below:

(1) accepts, if w is not in a valid format, i.e., not of the form (a+#)+. (M does

not need the counter.)

(2) accepts w if it is of the form ai1# · · ·#aik but ir+1 6= ir+1 for some r. (M

uses a 1-reversal counter.)

Since all NCM languages are semilinear, L is semilinear, but L is not semilinear (if it

were semilinear, then projecting onto a would be semilinear, but all unary semilinear

languages are regular [14] and this language is not regular by the pumping lemma).

This also implies non-closure for LD.

Next, for right quotient, it is known that there is a non-recursively enumerable

unary language L ⊆ a∗ (that is not semilinear) [27]. Let L′ = cLd ∪ da∗c. Then L′

is semilinear since it has the same Parikh image as the regular language da∗c. But

the right quotient of L′ with d is cL, which is not semilinear.

Similarly, the left quotient of L′ with c is Ld, which is not semilinear. The result

for intersection is also similar.

For inverse homomorphism, take a homomorphism h that maps b to ca, e to

a, and f to d, and g to ac. Then h−1(L′) = bL′′f ∪ fa∗g where L′′ = La−1. The

language h−1(L′) is clearly not semilinear.

In contrast, it can be seen that for inverse homomorphisms where the homomor-

phisms are weak codings (that is, |h(a)| ≤ 1 for all a ∈ Σ), then the resulting family

is semilinear, as inverse homomorphisms act just as substitutions (as mentioned,

the substitution closure of a semilinear family is semilinear) with the additional

arbitrary insertion of characters erased by h (which can be added in by placing

another period in each linear set of the semilinear set with all 0’s except for a 1 for

the position of the character erased by the homomorphism).

These closure properties will motivate the next notion that can help define “well-

behaved” semilinear languages.

Definition 13. A semilinear language L is well-behaved if T̂ (L) is semilinear; that

is, it is well-behaved if closing it under all full trio operations only give semilinear

languages.

Some basic facts are in order.

Proposition 14. The following are true:

• if L ∈ L, a semilinear full trio, then L is well-behaved,

• not all semilinear languages are well-behaved.

Proof. The first property is immediate since T̂ (L) ⊆ L.
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Consider a non-recursively enumerable unary language L ⊆ a∗. Therefore, this

language is not semilinear (all unary semilinear languages are regular). Consider

L′ = bLc ∪ ca∗b. Then L′ is semilinear since it has the same Parikh image as the

regular language ca∗b. But L′ ∩ ba∗c = bLc, which is not semilinear. Thus, the clo-

sure of L′ by intersection with regular languages gives non-semilinear languages.

Consider the following language family:

LWB = {L | L is well-behaved.}.

Proposition 15. LWB is the largest semilinear full trio. That is, all semilinear

full trios are contained in LWB.

Proof. First, it is a semilinear full trio since all languages in it are semilinear, and

the closure of each under the full trio properties are in it.

Furthermore, it is the largest since any language not in it must either not be

semilinear, or closing it under the full trio operations produces languages that are

not semilinear.

This is similar to the known result that there is a largest semilinear AFL [9]. This

is an interesting language family, as properties that hold for this single language

family hold for all semilinear full trios.

For example, consider the following. A bounded language L ⊆ w∗

1 · · ·w
∗

k is called

bounded Ginsburg semilinear (often just called bounded semilinear in the literature)

if the set {(i1, . . . , ik) | wi1
1 · · ·wik

k ∈ L} is a semilinear set. The following is true

from [17]:

Proposition 16. All bounded languages in LWB are bounded Ginsburg semilinear

languages.

Next, it follows from Theorem 3.2.3 of [7], that for all non-empty languages

L, T̂ (L) = {h2(h
−1
1 (L) ∩ R) | R is regular, h1, h2 are decreasing homomorphisms}.

The homomorphisms are both weak codings. Also, semilinear languages are closed

under homomorphisms. Hence, the following is true:

Proposition 17. L is well-behaved if and only if the family

{h−1(L) ∩R | R is regular, h is a weak coding homomorphism}

are all semilinear.

It is evident that h−1(L) must be semilinear since it was previously noted that the

family obtained from any semilinear family via inverse weak coding homomorphisms

must be semilinear. Hence, if one examines the family of semilinear languages L =

{h−1(L) | h is a weak coding homomorphism}, then L is well-behaved if and only

if L ∧ L(NFA).
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6. Applications to Indexed Grammars with Counters

In this section, we describe some new types of grammars obtained from existing

grammars generating a semilinear language family L, by adding counters. The

languages generated by these new grammars are then shown to be contained in

F̂(L ∧ NCM), and by an application of Proposition 3, are all semilinear with posi-

tive decidability properties.

We need the definition of an indexed grammar introduced in [1] by following the

notation of [16], Section 14.3.

Definition 18. An indexed grammar is a 5-tuple G = (V,Σ, I, P, S), where V,Σ, I

are finite pairwise disjoint sets: the set of nonterminals, terminals, and indices,

respectively, S is the start nonterminal, and P is a finite set of productions, each

of the form either

1) A→ ν, 2) A→ Bf, or 3) Af → ν,

where A,B ∈ V, f ∈ I and ν ∈ (V ∪ Σ)∗.

Let ν be an arbitrary sentential form of G, which is of the form

ν = u1A1α1u2A2α2 · · ·ukAkαkuk+1,

where Ai ∈ V, αi ∈ I∗, ui ∈ Σ∗, 1 ≤ i ≤ k, uk+1 ∈ Σ∗. For a sentential form

ν′ ∈ (V I∗ ∪ Σ)∗, we write ν ⇒G ν′ if one of the following three conditions holds:

(1) There exists a production in P of the form (1) A → w1C1 · · ·wℓCℓwℓ+1,

Cj ∈ V,wj ∈ Σ∗, and there exists i with 1 ≤ i ≤ k, Ai = A and

ν′ = u1A1α1 · · ·ui(w1C1αi · · ·wℓCℓαiwℓ+1)ui+1Ai+1αi+1 · · ·ukAkαkuk+1.

(2) There exists a production in P of the form (2) A → Bf

and there exists i, 1 ≤ i ≤ k, Ai = A and ν′ =

u1A1α1 · · ·ui(Bfαi)ui+1Ai+1αi+1 · · ·ukAkαkuk+1.

(3) There exists a production in P of the form (3) Af → w1C1 · · ·wℓCℓwℓ+1,

Cj ∈ V,wj ∈ Σ∗, and an i, 1 ≤ i ≤ k, Ai = A, αi = fα′

i, α
′

i ∈ I∗, with

ν′ = u1A1α1 · · ·ui(w1C1α
′

i · · ·wℓCℓα
′

iwℓ+1)ui+1Ai+1αi+1 · · ·ukAkαkuk+1.

Then, ⇒∗

G denotes the reflexive and transitive closure of ⇒G. The language L(G)

generated by G is the set L(G) = {u ∈ Σ∗ | S ⇒∗

G u}.

This type of grammar can be generalized to include monotonic counters as fol-

lows:

Definition 19. An indexed grammar with k counters is defined as in indexed gram-

mars, except where rules (1), (2), (3) above are modified so that a rule α→ β now

becomes:

α → (β, c1, . . . , ck), (1)

where ci ≥ 0, 1 ≤ i ≤ k. Sentential forms are of the form (ν, n1, . . . , nk), and ⇒G

operates as do indexed grammars on ν, and for a production in Equation 1, adds
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ci to ni, for 1 ≤ i ≤ k. The language generated by G with terminal alphabet Σ and

start nonterminal S is, L(G) = {u | u ∈ Σ∗, (S, 0, . . . , 0) ⇒∗

G (u, n1, . . . , nk), n1 =

· · · = nk}.

Given an indexed grammar with counters, the underlying grammar is the indexed

grammar obtained by removing the counter components from productions.

Although indexed grammars generate non-semilinear languages, restrictions will

be studied that only generate semilinear languages.

An indexed grammar G is linear [6] if the right side of every production of G has

at most one variable. Furthermore, G is right linear if it is linear, and terminals can

only appear to the left of a nonterminal in productions. Let L-IND be the family of

languages generated by linear indexed grammars, and let RL-IND be the family of

languages generated by right linear indexed grammars.

Similarly, indexed grammars with counters can be restricted to be linear. An

indexed grammar with k-counters is said to be linear indexed (resp. right linear)

with k counters, if the underlying grammar is linear (resp. right linear). Let L-INDc

(resp. RL-INDc) be the family of languages generated by linear (resp. right linear)

indexed grammars with counters.

Example 20. Consider the language L = {v$w | v, w ∈ {a, b, c}∗, |v|a = |v|b =

|v|c, |w|a = |w|b = |w|c} which can be generated by a linear indexed grammar with

counters G = (V,Σ, I, P, S) where P contains

S → (S, 1, 1, 1, 0, 0, 0) | (S, 0, 0, 0, 1, 1, 1) | (T, 0, 0, 0, 0, 0, 0)

T → (aT, 1, 0, 0, 0, 0, 0) | (bT, 0, 1, 0, 0, 0, 0) | (cT, 0, 0, 1, 0, 0, 0) | ($R, 0, 0, 0, 0, 0, 0)

R → (aR, 0, 0, 0, 1, 0, 0) | (bR, 0, 0, 0, 0, 1, 0) | (cR, 0, 0, 0, 0, 0, 1) | (λ, 0, 0, 0, 0, 0, 0).

This language cannot be generated by a linear indexed grammar [3].

Next, a characterization of languages generated by these grammars will be given

with a sequence of results used towards the proof of Proposition 25.

In the following, Σ is a terminal alphabet, C = {c1, . . . , ck} (for some k ≥ 1)

is an alphabet distinct from Σ, and hc is a homomorphism on Σ ∪ C defined by

hc(a) = a for each a in Σ, and hc(ci) = λ for each ci in C.

Lemma 21. If L is in NCM (resp., NPCM), there is regular language (resp., NPDA)

R over the alphabet Σ ∪ C such that L = hc({w | w ∈ R, |w|c1 = · · · = |w|ck}).

Proof. Let L ⊆ Σ∗ be accepted by an NCM (resp., NPCM) with n 1-reversal

counters. Let C = {b1, c1, . . . , bn, cn} be an alphabet distinct from Σ. (Thus k = 2n.)

It follows from the constructions in [19], that there is a regular language R (resp.,

NPDA) over alphabet Σ∪C such that L = hc({w | w ∈ R, |w|b1 = |w|c1 , . . . , |w|bn =

|w|cn}). Now let R′ = (b1c1)
∗ · · · (bncn)

∗R. Clearly, R′ is also regular (resp., NPDA),

and L = hc({w | w ∈ R′, |w|b1 = |w|c1 = · · · = |w|bn = |w|cn}).
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Lemma 22. If L1 ⊆ Σ∗ is in L-IND, and L2 ⊆ Σ∗ is in NCM, then L1 ∩ L2 ∈

L-INDc.

Proof. By Lemma 21, since L2 is in NCM, there is regular set R over alphabet

Σ ∪ C such that L2 = hc({w | w ∈ R, |w|c1 = · · · = |w|ck}). Also, L′

1 = h−1
c (L1) is

also a linear indexed language since the family is a full trio [6], and L3 = L′

1 ∩R is

also a linear indexed language. Let G3 be a linear indexed grammar generating L3.

We can now construct from G3 a linear indexed grammar with counters gen-

erating L = L1 ∩ L2, such that, if α → β is a production in G3, then α →

(hc(β), |β|c1 , . . . , |β|ck) is a production in G4. Then L(G4) = L1 ∩ L2.

Since languages generated by linear indexed grammars with counters are clearly

closed under homomorphism, the following is true:

Corollary 23. Let h be a homomorphism, L1 ∈ L-IND, and L2 ∈ NCM. Then

h(L1 ∩ L2) ∈ L-INDc.

Lemma 24. If L ∈ L-INDc, then L = h(L1 ∩ L2) for some homomorphism h,

L1 ∈ L-IND, and L2 ∈ NCM.

Proof. Let L be generated by G. Construct a linear indexed grammar (without

counters) G1 as follows:

If α → (β, d1, . . . , dk) is a rule in G, then α → β′ is a rule in G1, where β′ =

cd1

1 · · · cdk

k β, (i.e., we append to the left of β a terminal string representing the

increments in the counters).

Let L1 be the language generated by G1. Let L2 = {w | w ∈ (Σ ∪ C)∗, |w|c1 =

· · · = |w|ck}. Clearly L2 is an NCM language, and L = hc(L1 ∩ L2)

Proposition 25. L ∈ L-INDc if and only if there is a homomorphism h, L1 ∈

L-IND, and L2 ∈ NCM such that L = h(L1 ∩ L2).

Proof. This follows immediately from Corollary 23 and Lemma 24.

Implied from the above result and Proposition 3 and since L-IND is an effec-

tively semilinear trio [6] is that L-INDc ⊆ F̂(L-IND∧NCM), and therefore L-INDc is

effectively semilinear.

Corollary 26. The languages generated by linear indexed grammar with counters

are effectively semilinear, with decidable emptiness, membership, and infiniteness

problems.

Next, a machine model characterization of right linear indexed grammars with

counters will be provided. Recall that an NPCM is a pushdown automaton aug-

mented by reversal-bounded counters. The proof uses the fact that every context-

free language can be generated by a right-linear indexed grammar [6].
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Proposition 27. RL-INDc = NPCM.

Proof. First, it will be show that NPCM ⊆ RL-INDc. Let L ∈ NPCM. Then,

by Lemma 21, there is an NPDA L1 over Σ ∪ C such that L = hc({w | w ∈

L1, |w|c1 = · · · = |w|ck}). It is known that every context-free language can be

generated by a right-linear indexed grammar [6], and hence there is a right-linear

indexed grammar G1 generating L1. Construct from G1, a right-linear indexed

grammar G with counters generating L, such that, if α→ β is a production in G1,

then α → (hc(β), |β|c1 , . . . , |β|ck) is a production in G. Then L(G) = L.

Next, the converse will be shown. Let G be a right-linear indexed grammar

with counters. We first construct a right-linear grammar (without counters) G1

generating a language L1 as in the proof of Lemma 24. Then L(G1) is a context-

free language, and can be accepted by an NPDA M1. We then construct an NPCM

M which, when given an input w, simulates M1 and checks that |w|c1 = · · · = |w|ck
using 1-reversal counters. Finally, we construct from M another NPCM M ′ which

erases the ci’s. Clearly, L(M ′) = L.

We conjecture that the family of languages generated by right-linear indexed

grammars with counters (the family of NPCM languages) is properly contained

in the family of languages generated by linear indexed grammars with counters.

Candidate witness languages are L = {w$w | w ∈ {a, b, c}∗, |w|a + |w|b = |w|c} and

L′ = {w$w | w ∈ {a, b}∗}. It is known that L′ is generated by a linear indexed

grammar [6], and hence L can be generated by such a grammar with two counters.

But, both L′ and L seem unlikely to be accepted by any NPCM. Therefore, indexed

grammars with counters form quite a general semilinear family as it seems likely to

be more general than NPCM.

Next, another subfamily of indexed languages is studied that are even more ex-

pressive than linear indexed grammars but still only generate semilinear languages.

An indexed grammar G = (V,Σ, I, P, S) is said to be uncontrolled index-r if,

every sentential form in every successful derivation has at most r nonterminals. G

is uncontrolled finite-index if G is uncontrolled index-r, for some r. Let U-IND be

the languages generated by uncontrolled finite-index indexed grammars.

Uncontrolled finite-index indexed grammars have also been studied under the

name of breadth-bounded indexed grammars in [31, 3], where it was shown that the

languages generated by these grammars are a semilinear full trio.

This concept can then be carried over to indexed grammars with counters.

Definition 28. An indexed grammar with k-counters is uncontrolled index-r (resp.

uncontrolled finite-index) if the underlying grammar is uncontrolled index-r (resp.

uncontrolled finite-index). Let U-INDc be the languages generated by uncontrolled

finite-index indexed grammar with k-counters, for some k.

One can easily verify that Proposition 25 also applies to uncontrolled finite-index

indexed grammars with counters. Hence, we have:
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Proposition 29. L ∈ U-INDc if and only if there is a homomorphism h, L1 ∈

U-IND, L2 ∈ NCM such that L = h(L1 ∩ L2).

Implied from the above proposition and Proposition 3 also is that these new

languages are all semilinear.

Corollary 30. U-INDc is effectively semilinear, with decidable emptiness, member-

ship, and infiniteness problems.

Hence, RL-INDc ⊆ L-INDc ⊆ U-INDc. We conjecture that both containments are

strict; the first was discussed previously, and the second is likely true since L-IND (

U-IND [3]. Hence, U-INDc forms quite a general semilinear family, containing NPCM

with positive decidability properties.

7. Conclusions and Future Directions

It has been previously shown that certain types of machine models accepting only

semilinear languages can be augmented by reversal-bounded counters to create a

more general machine model, while maintaining semilinearity and positive decision

properties. However, this approach did not clearly define what types of models

would work with this augmentation, and it did not work with other mechanisms for

describing languages. Here, a closure property theoretic method is developed, and

it is shown that, for every semilinear full trio L, the smallest full AFL containing L

also closed under intersection with reversal-bounded multicounter languages (NCM)

is semilinear. Furthermore, the semilinearity is effective in the resulting family if it

is effective (with other properties) in L.

This can be applied in numerous ways. For example, it is shown that if certain

subclasses of indexed grammars (linear indexed, or uncontrolled finite-index) are

augmented by counters with additional components of the grammars that function

like counters, then the resulting families are more general, yet they remain semilinear

and have decidable emptiness, membership, and infiniteness problems. There are

also other applications, such as to analyzing definitions of abstract automata with

multitape stores.

Several open problems remain. It is open whether the application of Proposition

3 creates a strict hierarchy. With respect to indexed grammars with counters, it is

open as to whether right-linear grammars are strictly weaker than linear grammars,

and whether those are weaker than uncontrolled finite-index grammars.
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