Skip to main content

Verified Memoization and Dynamic Programming

  • Conference paper
  • First Online:
Book cover Interactive Theorem Proving (ITP 2018)

Abstract

We present a lightweight framework in Isabelle/HOL for the automatic verified (functional or imperative) memoization of recursive functions. Our tool constructs a memoized version of the recursive function and proves a correspondence theorem between the two functions. A number of simple techniques allow us to achieve bottom-up computation and space-efficient memoization. The framework’s utility is demonstrated on a number of representative dynamic programming problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If f has type \(\tau _1 \rightarrow \cdots \rightarrow \tau _n\) and x has type \(\tau \), the variables \( f _\textsf {m}'\) and \( x _\textsf {m}\) are assumed to have types \(M'(\tau _1)\rightarrow \cdots \rightarrow M'(\tau _n)\) and \(M(\tau )\), respectively. For a term \(x\,{:}{:}\,\tau \) that satisfies \(M'(\tau )=\tau \), x and \( x _\textsf {m}'\) are used interchangeably.

  2. 2.

    https://projecteuler.net/problem=114.

  3. 3.

    http://www.pm.inf.ethz.ch/research/verifythis.html.

References

  1. Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 24–40. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45842-5_2

    Chapter  Google Scholar 

  2. Bortin, M.: A formalisation of the Cocke-Younger-Kasami algorithm. Archive of Formal Proofs (2016). http://isa-afp.org/entries/CYK.html, Formal proof development

  3. Braibant, T., Jourdan, J., Monniaux, D.: Implementing and reasoning about hash-consed data structures in Coq. J. Autom. Reasoning 53(3), 271–304 (2014). https://doi.org/10.1007/s10817-014-9306-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative functional programming with Isabelle/HOL. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7_14

    Chapter  Google Scholar 

  5. Erwig, M., Ren, D.: Monadification of functional programs. Sci. Comput. Program. 52(1), 101–129 (2004). http://www.sciencedirect.com/science/article/pii/S0167642304000486, special Issue on Program Transformation

    Article  MathSciNet  Google Scholar 

  6. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 100–115. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2_10

    Chapter  Google Scholar 

  7. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12251-4_9

    Chapter  Google Scholar 

  8. Hatcliff, J., Danvy, O.: A generic account of continuation-passing styles. In: Conf. Record of POPL’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. pp. 458–471 (1994), http://doi.acm.org/10.1145/174675.178053

  9. Itzhaky, S., Singh, R., Solar-Lezama, A., Yessenov, K., Lu, Y., Leiserson, C., Chowdhury, R.: Deriving divide-and-conquer dynamic programming algorithms using solver-aided transformations. In: Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, pp. 145–164. ACM (2016). http://doi.acm.org/10.1145/2983990.2983993

  10. Kleinberg, J.M., Tardos, É.: Algorithm Design. Addison-Wesley (2006)

    Google Scholar 

  11. Krauss, A.: Automating recursive definitions and termination proofs in higher-order logic. Ph.D. thesis, Technical University Munich (2009). http://mediatum2.ub.tum.de/doc/681651/document.pdf

  12. Kuncar, O.: Types, abstraction and parametric polymorphism in higher-order logic. Ph.D. thesis, Technical University Munich, Germany (2016). http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20160408-1285267-1-5

  13. Lammich, P.: Refinement to Imperative/HOL. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 253–269. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1_17

    Chapter  Google Scholar 

  14. Lammich, P., Wimmer, S.: VerifyThis 2018 – Polished Isabelle solutions. Archive of Formal Proofs, April 2018. http://isa-afp.org/entries/VerifyThis2018.html, Formal proof development

  15. Michie, D.: Memo functions and machine learning. Nature 218, 19–22 (1968)

    Article  Google Scholar 

  16. Nipkow, T., Klein, G.: Concrete Semantics with Isabelle/HOL. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10542-0. http://concrete-semantics.org

    Book  MATH  Google Scholar 

  17. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

    Book  MATH  Google Scholar 

  18. Nipkow, T., Somogyi, D.: Optimal binary search tree. Archive of Formal Proofs (2018). http://isa-afp.org/entries/Optimal_BST.html, Formal proof development

  19. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP Congress, pp. 513–523 (1983)

    Google Scholar 

  20. Slind, K.: Reasoning about terminating functional programs. Ph.D. thesis, Technical University Munich, Germany (1999). https://mediatum.ub.tum.de/node?id=601660

  21. Verma, K.N., Goubault-Larrecq, J., Prasad, S., Arun-Kumar, S.: Reflecting BDDs in Coq. In: Jifeng, H., Sato, M. (eds.) ASIAN 2000. LNCS, vol. 1961, pp. 162–181. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44464-5_13

    Chapter  MATH  Google Scholar 

  22. Wadler, P.: Theorems for free! In: Proceedings of the Fourth International Conference on Functional Programming Languages and Computer Architecture, FPCA 1989, pp. 347–359. ACM (1989). http://doi.acm.org.eaccess.ub.tum.de/10.1145/99370.99404

  23. Wimmer, S.: Hidden Markov models. Archive of Formal Proofs (2018). http://isa-afp.org/entries/Hidden_Markov_Models.html, Formal proof development

  24. Wimmer, S., Hu, S., Nipkow, T.: Monadification, memoization and dynamic programming. Archive of Formal Proofs (2018). http://isa-afp.org/entries/Monad_Memo_DP.html, Formal proof development

Download references

Acknowledgments

Tobias Nipkow is supported by DFG Koselleck grant NI 491/16-1. The authors would like to thank Andreas Lochbihler for a fruitful discussion on monadification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Wimmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wimmer, S., Hu, S., Nipkow, T. (2018). Verified Memoization and Dynamic Programming. In: Avigad, J., Mahboubi, A. (eds) Interactive Theorem Proving. ITP 2018. Lecture Notes in Computer Science(), vol 10895. Springer, Cham. https://doi.org/10.1007/978-3-319-94821-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94821-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94820-1

  • Online ISBN: 978-3-319-94821-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics