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Abstract Recently, studies on deep Reservoir Computing (RC) highlighted the role
of layering in deep recurrent neural networks (RNNs). In this paper, the use of linear
recurrent units allows us to bring more evidence on the intrinsic hierarchical tem-
poral representation in deep RNNs through frequency analysis applied to the state
signals. The potentiality of our approach is assessed on the class of Multiple Super-
imposed Oscillator tasks. Furthermore, our investigation provides useful insights to
open a discussion on the main aspects that characterize the deep learning framework
in the temporal domain.

Key words: Reservoir Computing, Deep Learning, Deep Echo State Network,
Multiple Time-Scales Processing.

1 Introduction

In the last years, the extension of deep neural network architectures towards recur-
rent processing of temporal data has opened the way to novel approaches to effec-
tively learn hierarchical representations of time-series featured by multiple time-
scales dynamics [19, 18, 10, 9, 1]. Recently, within the umbrella of randomized
neural network approaches [4], Reservoir Computing (RC) [21, 15] has proved to
be a useful tool for analyzing the intrinsic properties of stacked architectures in re-
current neural networks (RNNs), allowing at the same time to exploit the extreme
efficiency of RC training algorithms in the design of novel deep RNN models. Stem-
ming from the Echo State Network (ESN) approach [12] the study of the dynamics
of multi-layered recurrent reservoir architectures has been introduced with the deep-
ESN model in [7, 5]. In particular, the outcomes of the experimental analysis in [7, 5]
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as well as theoretical results in the field of dynamical systems [6, 8], highlighted the
role of layering in the inherent development of progressively more abstract temporal
representations in the higher layers of deep recurrent models.

In this paper, we take a step forward in the study of the structure of the tempo-
ral features naturally emerging in layered RNNs. To this aim, we resort to classical
tools in the area of signal processing to analyze the differentiation among the state
representations developed by the different levels of a deepESN in a task involv-
ing signals in a controlled scenario. In particular, we simplify the deepESN design
by implementing recurrent units with linear activation function, i.e. we adopt lin-
ear deepESN (L-deepESN). In the analysis of the frequency spectrum of network’s
states, this approach brings the major advantage of avoiding the effects of harmonic
distortion due to non-linear activation functions. To provide a quantitative support
to our analysis, we experimentally assess the L-deepESN model on a variety of pro-
gressively more involving versions of the Multiple Superimposed Oscillator (MSO)
task [22, 23]. Note that the class of MSO tasks is of particular interest for the aims
of this paper, especially in light of previous literature results that pointed out the
relevant need for multiple time-scales processing ability [13, 20, 23] as well as the
potentiality of linear models in achieving excellent predictive results in base settings
of the problem [2]. Another example of application of linear RNNs is in [17].

As a further contribution, our investigation would offer interesting insights on
the nature of compositionality in deep learning architectures. Typically, deep neu-
ral networks consist in a hierarchy of many non-linear hidden layers that enable a
distributed information representation (through learning) where higher layers spe-
cialize to progressively more abstract concepts. Removing the characteristic of non-
linearity, and focusing on the ability to develop a hierarchical diversification of tem-
poral features (prior to learning), our analysis sheds new light into the true essence
of layering in deep RNN even with linear recurrent units.

The rest of this paper is organized as follows. In Section 2 we introduce the L-
deepESN model. In Section 3 we analyze the hierarchical nature of temporal repre-
sentations in L-deepESN, presenting the experimental results on the MSO tasks and
the outcomes of the signal processing analysis of the developed system dynamics.
Finally, in Section 4 we draw the conclusions.

2 Linear Deep Echo State Networks

A deepESN architecture [7] is composed by a stack of NL recurrent reservoir layers,
where at each time step t the first layer receives the external input u(t)∈RNU , while
successive layers are fed by the output of the previous layer in the hierarchy. We
denote the state of layer i at time t by x(i)(t)∈RNR , where we assume the same state
dimension NR for every layer for the sake of simplicity. A schematic representation
of the reservoir architecture in a deepESN is provided in Figure 1.

By referring to the case of leaky integrator reservoir units [13], and omitting the
bias terms for the ease of notation, the state transition function of the first layer is
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input layer 1st layer 2nd layer 𝐍𝐋-th layer 

Fig. 1: Layered reservoir architecture in a deepESN.
.

given by the following equation:

x(1)(t) = (1−a(1))x(1)(t−1)+a(1)f(Winu(t)+Ŵ(1)x(1)(t−1)), (1)

whereas the state transition of layer i > 1 is ruled by the equation:

x(i)(t) = (1−a(i))x(i)(t−1)+a(i)f(W(i)x(i−1)(t)+Ŵ(i)x(i)(t−1)), (2)

where a(i) ∈ [0,1] is the leaking rate parameter at layer i, Win ∈RNR×NU is the input
weight matrix, W(i) ∈ RNR×NR is the weight matrix of the inter-layer connections
from layer i− 1 to layer i, Ŵ(i) ∈ RNR×NR is the matrix of recurrent weights of
layer i, and f denotes the element-wise application of the activation function of the
recurrent units. A null initial state is considered for the reservoirs in all the layers,
i.e. x(i)(0) = 0 for all i = 1, . . . ,NL.

The case of L-deepESN is obtained from equations 1 and 2 when a linear acti-
vation function is used for each recurrent unit, i.e. f = id. As in standard RC, all
the reservoirs parameters, i.e. all the weight matrices in equations 1 and 2, are left
untrained after initialization subject to stability constraints. According to the neces-
sary condition for the Echo State Property of deep RC networks [6], stability can
be accomplished by constraining the maximum among the spectral radii of ma-
trices

(
(1−a(i))I+a(i)Ŵ(i)

)
, individually denoted by ρ(i), to be not above unity.

Thereby, a simple initialization condition for L-deepESNs consists in randomly se-
lecting the weight values in matrices Win and {W(i)}NL

i=2 from a uniform distribution
in [−scalein,scalein], whereas the weights in recurrent matrices {Ŵ(i)}NL

i=1 are ini-
tialized in a similar way and are then re-scaled to meet the condition on maxρ(i).

In this context it also interesting to observe that the use of linearities allows
us to express the evolution of the whole system by means of an algebraic ex-
pression that describes the dynamics of an equivalent single-layer recurrent sys-
tem with the same total number of recurrent units. Specifically, denoting by x(t) =
(x(1)(t),x(2)(t), . . . ,x(NL)(t)) ∈ RNLNR the global state of the network, the depen-
dence of x(t) from x(t−1) can be expressed as x(t) = Vx(t−1)+Vinu(t), where
both V ∈ RNLNR×NLNR and Vin ∈ RNLNR×NU can be viewed as block matrices, with
block elements denoted respectively by Vi, j ∈ RNR×NR and Vin,i ∈ RNR×NU , i.e.:
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x(t) =

V1,1 . . . V1,NL
...

. . .
...

VNL,1 . . . VNL,NL

x(t−1)+

Vin,1
...
Vin,NL

u(t). (3)

Noticeably, the layered organization imposes a lower triangular block matrix struc-
ture to V such that in the linear case its blocks can be computed as:

Vi, j =


0 if i < j
(1−a(i))I+a(i)Ŵ(i) if i = j
(∏i

k= j+1 a(k)W(k))
(
(1−a( j))I+a( j)Ŵ( j)

)
if i > j.

(4)

Moreover, as concerns the input matrix, we have:

Vin,i =

{
a(1)Win if i = 1
(∏i

k=2 a(k)W(k))a(1)Win if i > 1.
(5)

The mathematical description provided here for the L-deepESN case is partic-
ularly helpful in order to highlight the characterization resulting from the layered
composition of recurrent units. Indeed, from an architectural perspective, a deep
RNN can be seen as obtained by imposing a set of constraints to the architecture of
a single-layer fully connected RNN with the same total number of recurrent units.
Specifically, a deep RNN can be obtained from the architecture of a fully connected
(shallow) RNN by removing the recurrent connections corresponding in the deep
version to the connections from higher layers to lower layers, as well as the input
connections to the levels higher than 1. In this respect, the use of linear activation
functions has the effect of enhancing the emergence of such constrained characteri-
zation and making it visible through the peculiar algebraic organization of the state
update as described by equations 3, 4 and 5. Indeed, the constrained structure given
by the layering factor is reflected in the (lower triangular block) structure of the
matrix V that rules the recurrence of the whole network dynamics in equation 3. In
particular, the last line of equation 4 highlights the progressive filtering effect on the
state information propagated towards the higher levels in the network, modulated
by the leaking rates and through the magnitude of the inter-layer weights values.
Similarly, the last line of equation 5 shows the analogous progressive filtering effect
operated on the external input information for increasing level’s depth.

Thereby, although from the system dynamics viewpoint it is possible to find a
shallow recurrent network that is equivalent to an L-deepESN, the resulting form of
the matrices that rules the state evolution, i.e. V and Vin, has a distinct character-
ization that is due to the layered construction. Moreover, note that the probability
of obtaining such matrices V and Vin by means of standard random reservoir ini-
tialization is negligible. Noteworthy, the aforementioned architectural constraints
imposed by the hierarchical construction are reflected also in the ordered structure
of the temporal features represented in higher levels of the recurrent architecture,
as investigated for linear reservoirs in Section 3, and as observed, under a different
perspective and using different mathematical tools, in the non-linear case in [7].
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As regards network training, as in standard RC, the only learned parameters of
the L-deepESN are those pertaining to the readout layer. This is used for output
computation by means of a linear combination of the reservoir units activations in
all the levels, allowing the linear learner to weight differently the contributions of
the multiple dynamics developed in the network state. In formulas, at each time step
t the output y(t) ∈RNY is computed as y(t) = Woutx(t), where Wout ∈RNY×NLNR is
the output weight matrix whose values are learned from a training set. Typically, as
in the standard RC framework, the values in Wout are found in closed form by using
direct methods such as pseudo-inversion or ridge regression [15].

3 Experimental Assessment

In this section we present the results of the experimental assessment of L-deepESN
on the class of MSO tasks.

An MSO task consists in a next-step prediction on a 1-dimensional time-series,
i.e. for each time step t the target output is given by ytarget(t) = u(t + 1), where
NU = NY = 1. The considered time-series is given by a sum of sinusoidal functions:

u(t) =
n

∑
i=1

sin(ϕit) (6)

where n denotes the number of sinusoidal functions, ϕi determines the frequency
of the i-th sinusoidal function and t is the index of the time step. In the following,
we use the notation MSOn to specify the number n of sinusoidal functions that
are accounted in the task definition. The ϕi coefficients in equation 6 are set as in
[16, 14], i.e. ϕ1 = 0.2,ϕ2 = 0.331,ϕ3 = 0.42,ϕ4 = 0.51,ϕ5 = 0.63,ϕ6 = 0.74,ϕ7 =
0.85,ϕ8 = 0.97,ϕ9 = 1.08,ϕ10 = 1.19,ϕ11 = 1.27,ϕ12 = 1.32. In particular, in our
experiments we focus on versions of the MSO task with a number of sine waves
n ranging from 5 to 12. This allows us to exercise the ability of the RC models
to develop a hierarchy of temporal representations in challenging cases where the
input signal is enriched by the presence of many different time-scales dynamics.
Besides, note that summing an increasing number of sine waves with frequencies
that are not integer multiples of each other makes the prediction task harder due to
the increasing signal period. An example of the input signal for the MSO12 task is
given in Figure 2. For all the considered settings of the MSO task, the first 400 steps
are used for training (with a washout of length 100), time steps from 401 to 700 are
used for validation and the remaining steps from 701 to 1000 are used for test.

In our experiments, we used L-deepESN with NL levels, each consisting in a
fully connected reservoir with NR units. We assumed that Win and {W(i)}NL

i=2 are
initialized with the same scaling parameter scalein, and we used the same value of
the spectral radius and of the leaking rate in every level, i.e. ρ(i) = ρ and a(i) = a
for every i. For readout training we used ridge regression. Table 1 reports the range
of values considered for every hyper-parameter considered in our experiments.
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Fig. 2: A 400 time step long excerpt of the input sequence for the MSO12 task.

Hyper-parameter Values considered for model selection
number of levels NL 10
reservoir size NR 100
input scaling scalein 0.01, 0.1, 1
leaking rate a 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
spectral radius ρ 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
ridge regression regularization λr 10−11,10−10, ...,100

Table 1: Hyper-parameters values considered for model selection on the MSO tasks.

In order to evaluate the predictive performance on the MSO tasks, we used the
normalized root mean square error (NRMSE), calculated as follows:

NRMSE =

√
(

T

∑
t=1

(ytarget(t)− y(t))2)/(T σ2
ytarget (t)

), (7)

where T denotes the sequence length, ytarget(t) and y(t) are the target and the net-
work’s output at time t, and σ2

ytarget (t)
is the variance of ytarget . For each reservoir

hyper-parametrization, we independently generated 10 reservoir guesses, the pre-
dictive performance in the different cases has been averaged over such guesses and
then the model’s hyper-parameterization has been selected on the validation set.

In the following Sections 3.1 and 3.2 we respectively evaluate our approach from
a quantitative point of view, comparing the predictive performance of L-deepESN
with related literature models, and from a qualitative perspective, by analyzing the
frequencies of the state activations developed in the different reservoir levels.

3.1 Predictive Performance

In this section on recent (more complex and richer) variants of the MSO task, with a
number of sine waves n varying from 5 to 12. Table 2 provides a comparison among
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the NRMSE achieved on the test set by L-deepESN, neuro-evolution [16], balanced
ESN [14], ESN with infinite impulse response units (IIR ESN) [11] and Evolino
[20] on the considered MSO tasks. Furthermore, in the same table, we report the
performance achieved by linear ESN built with a single fully connected reservoir (L-
ESN), considering the same range of hyper-parameters and total number of recurrent
units as in the L-deepESN case.

Task L-deepESN L-ESN n.-evolution [16] balanced ESN [14] IIR ESN [11] Evolino [20]

MSO5 6.75 ·10−13 7.14 ·10−10 4.16 ·10−10 1.06 ·10−6 8 ·10−5 1.66 ·10−1

MSO6 1.68 ·10−12 5.40 ·10−9 9.12 ·10−9 8.43 ·10−5 - -
MSO7 5.90 ·10−12 5.60 ·10−8 2.39 ·10−8 1.01 ·10−4 - -
MSO8 1.07 ·10−11 2.08 ·10−7 6.14 ·10−8 2.73 ·10−4 - -
MSO9 5.34 ·10−11 4.00 ·10−7 1.11 ·10−7 - - -
MSO10 8.22 ·10−11 8.21 ·10−7 1.12 ·10−7 - - -
MSO11 4.45 ·10−10 1.55 ·10−6 1.22 ·10−7 - - -
MSO12 5.40 ·10−10 1.70 ·10−6 1.73 ·10−7 - - -

Table 2: Test NRMSE obtained by L-deepESN, L-ESN, neuro-evolution (n.-
evolution), balanced ESN, IIR ESN and Evolino on the MSO5-12 tasks.

Noteworthy, the proposed L-deepESN model outperformed the best literature re-
sults of about 3 or 4 orders of magnitude on all the MSO settings. Furthermore, test
errors obtained by L-ESN are always within one order of magnitude of difference
with respect to the best state-of-the-art results. These aspects confirms the effec-
tiveness of the linear activation function on this task, as also testified by our pre-
liminary results that showed poorer performance for RC networks with tanh units,
unless forcing the operation of the activation function in the linear region. More-
over, L-deepESN always performed better then L-ESN. On the basis of the known
characterization of the MSO task, our results confirm the quality of the hierarchical
structure of recurrent reservoirs in representing multiple time-scales dynamics with
respect to its shallow counterpart.

For the sake of completeness, we performed a further comparison considering
L-deepESNs with the same number of total recurrent units used by the other ESN
models taken into account from literature. In particular, balanced ESN used a max-
imum number of 250 units for model selection on the MSO5, MSO6, MSO7 and
MSO8 tasks, while IIR ESN implemented 100 units on the MSO5 task (see re-
sults in Table 2). L-deepESN with NL = 10 and NR = 25 (i.e. a total of 250 recurrent
units) performed better than balanced ESN, obtaining a test NRMSE of 1.20 ·10−11,
8.73 ·10−11, 2.42 ·10−10 and 9.06 ·10−10, on the MSO5, MSO6, MSO7 and MSO8
tasks, respectively. Moreover, even L-deepESN with NL = 10 and NR = 10 (i.e. a
total of 100 recurrent units) obtained a better performance than IIR ESN, achieving
a test error of 7.41 ·10−11 on the MSO5 task.
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3.2 Hierarchical Temporal Representation Analysis

In this section we investigate the temporal representation developed by the reser-
voirs levels in an L-deepESN, using as input signal the sequence considered for the
MSO12 task, featured by rich dynamics with known multiple time-scales characteri-
zation (see equation 6). We used the same reservoir hyper-parameterization selected
for the predictive experiments on the MSO12 task in Section 3.1, namely NR = 100,
NL = 10, scalein = 1, a = 0.9 and ρ = 0.7, averaging the results over 100 reser-
voir guesses. In our analysis, we first computed the states obtained by running the
L-deepESN on the input sequence. Then, we performed the Fast Fourier Transform
(FFT) [3] algorithm on the states of all the recurrent units over the time, normalizing
the obtained values in order to enable a qualitative comparison. Finally, we averaged
the FFT values on a layer-by-layer basis.

The FFT values obtained for progressively higher levels of L-deepESN are shown
in Figures 3a), 3b), 3c) and 3d), which respectively focus on levels 1, 4, 7 and 10.
These figures represent the state signal in the frequency domain, where it is possi-

Fig. 3: FFT components of reservoir states in progressively higher levels of L-
deepESN, a): level 1, b): level 4, c): level 7, d): level 10.

ble to see 12 spikes corresponding to the 12 sine waves components of the input.
Looking at the magnitude of the FFT components, i.e. at the height of the spikes in
plots, we can have an indication of how the signals are elaborated by the individual
recurrent levels. We can see that the state of the reservoir at level 1 shows FFT com-
ponents all with approximately the same magnitude. The FFT components of reser-
voir states at levels 4, 7 and 10, instead, show diversified magnitudes. Specifically,
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we can see that in higher levels of the network higher frequency components are
progressively filtered, and lower frequency components tend to have relative higher
magnitudes. This confirms the insights on the progressive filtering effect discussed
in Section 2 in terms of mathematical characterization of the system.

Results in Figure 3 show that the hierarchical construction of recurrent mod-
els leads, even in the linear case, to a representation of the temporal signal that is
sparsely distributed across the network, where different levels tend to focus on a
different range of frequencies. Moreover, the higher is the level, the stronger is the
focus on lower frequencies, hence the state signals emerging in deeper levels are
naturally featured by coarser time-scales and slower dynamics. Thereby, the lay-
ered organization of the recurrent units determines a temporal representation that
has an intrinsic hierarchical structure. According to this, the multiple time-scales in
the network dynamics are ordered depending to the depth of reservoirs’ levels. Such
inherent characterization of the hierarchical distributed temporal representation can
be exploited when training the readout, as testified by the excellent predictive per-
formance of L-deepESN on the MSO tasks reported in Section 3.1.

4 Conclusions

In this paper, we have studied the inherent properties of hierarchical linear RNNs
by analyzing the frequency of the states signals emerging in the different levels of
the recurrent architecture. The FFT analysis revealed that the stacked composition of
reservoirs in a L-deepESN tends to develop a structured representation of the tempo-
ral information. Exploiting an incremental filtering effect, states in higher levels of
the hierarchy are biased towards slower components of the frequency spectrum, re-
sulting in progressively slower temporal dynamics. In this sense, the emerging struc-
ture of L-deepESN states can be seen as an echo of the multiple time-scales present
in the input signal, distributed across the layers of the network. The hierarchical
representation of temporal features in L-deepESN has been exploited to address re-
cent challenging versions of the MSO task. Experimental results showed that the
proposed approach dramatically outperforms the state-of-the-art on the MSO tasks,
emphasizing the relevance of the hierarchical temporal representation and also con-
firming the effectiveness of linear signal processing on the MSO problem.

Overall, we showed a concrete evidence that layering is an aspect of the net-
work construction that is intrinsically able to provide a distributed and hierarchical
feature representation of temporal data. Our analysis pointed out that this is possi-
ble even without (or prior to) learning of the recurrent connections, and releasing
the requirement for non-linearity of the activation functions. We hope that the con-
siderations delineated in this paper could contribute to open an intriguing research
question regarding the merit of shifting the focus, from the concepts of learning and
non-linearities, to the concepts of hierarchical organization and distribution of rep-
resentation to define the salient aspects of the deep learning framework for recurrent
architectures.
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18. Pascanu, R., Gülçehre, Ç., Cho, K., Bengio, Y.: How to construct deep recurrent neural net-
works. arXiv preprint arXiv:1312.6026v5 pp. 1–13 (2014)

19. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Networks 61, 85–
117 (2015)

20. Schmidhuber, J., Wierstra, D., Gagliolo, M., Gomez, F.: Training recurrent networks by
evolino. Neural computation 19(3), 757–779 (2007)

21. Verstraeten, D., Schrauwen, B., d’Haene, M., Stroobandt, D.: An experimental unification of
reservoir computing methods. Neural networks 20(3), 391–403 (2007)

22. Wierstra, D., Gomez, F.J., Schmidhuber, J.: Modeling systems with internal state using
evolino. In: Proceedings of the 7th annual conference on Genetic and evolutionary com-
putation, pp. 1795–1802. ACM (2005)

23. Xue, Y., Yang, L., Haykin, S.: Decoupled echo state networks with lateral inhibition. Neural
Networks 20(3), 365–376 (2007)


	Hierarchical Temporal Representation in Linear Reservoir Computing
	Claudio Gallicchio and Alessio Micheli and Luca Pedrelli
	1 Introduction
	2 Linear Deep Echo State Networks
	3 Experimental Assessment
	3.1 Predictive Performance
	3.2 Hierarchical Temporal Representation Analysis

	4 Conclusions
	References



