
Learning activation functions from data
using cubic spline interpolation

Simone Scardapane, Michele Scarpiniti, Danilo Comminiello, and Aurelio Uncini

Department of Information Engineering, Electronics and Telecommunications (DIET),
“Sapienza” University of Rome,

Via Eudossiana 18, 00184, Rome.
Email: {simone.scardapane, michele.scarpiniti, danilo.comminiell}@uniroma1.it;

aurel@ieee.org

Abstract. Neural networks require a careful design in order to perform properly
on a given task. In particular, selecting a good activation function (possibly in
a data-dependent fashion) is a crucial step, which remains an open problem in
the research community. Despite a large amount of investigations, most current
implementations simply select one fixed function from a small set of candidates,
which is not adapted during training, and is shared among all neurons through-
out the different layers. However, neither two of these assumptions can be sup-
posed optimal in practice. In this paper, we present a principled way to have
data-dependent adaptation of the activation functions, which is performed inde-
pendently for each neuron. This is achieved by leveraging over past and present
advances on cubic spline interpolation, allowing for local adaptation of the func-
tions around their regions of use. The resulting algorithm is relatively cheap to
implement, and overfitting is counterbalanced by the inclusion of a novel damp-
ing criterion, which penalizes unwanted oscillations from a predefined shape.
Preliminary experimental results validate the proposal.
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1 Introduction

Neural networks (NNs) are extremely powerful tools for approximating complex non-
linear functions [7]. The nonlinear behavior is introduced in the NN architecture by the
elementwise application of a given nonlinearity, called the activation function (AF), at
every layer. Since AFs are crucial to the dynamics and computational power of NNs,
the history of the two over the last decades is deeply connected [15]. As an example,
the use of differentiable AFs was one of the major breakthroughs in NNs, leading di-
rectly to the back-propagation algorithm. More recently, progress on piecewise linear
functions was shown to facilitate backward flow of information for training very deep
networks [4]. At the same time, it is somewhat surprising that the vast majority of NNs
only use a small handful of fixed functions, to be hand-chosen by the practitioner be-
fore the learning process. Worse, there is no principled reason to believe that a ‘good’
nonlinearity might be the same across all layers of the network, or even across neurons
in the same layer.
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This is shown clearly in a recent work by Agostinelli et al. [1], where every neuron
in a deep network was endowed with an adaptable piecewise linear function with possi-
bly different parameters, concluding that “the standard one-activation-function-fits-all
approach may be suboptimal” in current practice. Experiments in AF adaptation have a
long history, but they have never met a wide applicability in the field. The simplest ap-
proach is to parameterize each sigmoid function in the network by one or more ‘shape’
parameters to be optimized, such as in the seminal 1996 paper by Chen and Chang
[3] or the later work by Trentin [16]. Along a similar line, one may consider the use
of polynomial AFs, wherein each coefficient of the polynomial is adapted by gradient
descent [11]. Additional investigations can be found in [20,5,2,10,9]. One strong draw-
back of these approaches is that the parameters involved affect the AF globally, such
that a change in one region of the function may be counterproductive on a different,
possibly faraway, region.

Several years ago, an alternative approach was introduced by using spline interpo-
lating functions as AFs [17,6], resulting in what was called a spline AF (SAF). Splines
are an attractive choice for interpolating unknown functions, since they can be described
by a small amount of parameters, yet each parameter has a local effect, and only a fixed
number of them is involved every time an output value is computed [18]. The original
works in [17,6] had two main drawbacks that prevented a wider use of the underly-
ing theory. First, SAFs were only investigated in an online setting, where updates are
computed one sample at a time. Whether an efficient implementation is possible (and
feasible) also for batch (or mini-batch) settings was not shown. Secondly, the obtained
SAFs had a tendency to overfit training data, resulting in oscillatory behaviors which
hindered performance. Inspired by recent successes in the field of nonlinear adaptive
filtering [13,14], our aim in this paper is two-fold. On one hand, we provide a modern
introduction to the use of SAFs in neural networks, with a particular emphasis on their
efficient implementation in the case of batch (or mini-batch) training. Our treatment
clearly shows that the major problem in their implementation, which is evident from
the discussion above, is the design of an efficient way to regularize their control points.
In this sense, as a second contribution we provide a simple (yet effective) ‘damping’ cri-
terion to prevent unwanted oscillations in the testing phase, which penalizes deviations
from the original points in terms of `2 norm. A restricted set of experiments shows that
the resulting formulation is able to achieve a lower test error than a standard NN with
fixed AFs, while at the same time learning non-trivial activations with different shapes
across different neurons.

The rest of the paper is organized as follows. Section 2 presents the basic theory of
SAFs for the case of a single neuron. Section 3 extends the treatment to the case of a NN
with one hidden layer, by deriving the gradient equations for the SAFs parameters in the
internal layer. Then, Section 4 goes over the experimental results, while we conclude
with some final remarks in Section 5.

2 The spline activation function

We begin our treatment of SAFs with the simplest case of a single neuron endowed
with a flexible AF (see [17,13] for additional details). Given a generic input x∈RD, the
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output of the SAF is computed as:

s = wT x , (1)
y = ϕ(s;q) , (2)

where w∈RD (we suppose that an eventual bias term is added directly to the input vec-
tor), and the AF ϕ(·) is parameterized by a vector q ∈RQ of internal parameters, called
knots. The knots are a sampling of the AF values over Q representative points spanning
the overall function. In particular, we suppose the knots to be uniformly spaced, i.e.
qi+1 = qi +∆x, for a fixed ∆x ∈ R, and symmetrically spaced around the origin. Given
s, the output is computed by spline interpolation over the closest knot and its P right-
most neighbors. The common choice P = 3, which we adopt in this paper, corresponds
to cubic interpolation, and it is generally a good trade-off between locality of the output
and interpolating precision.

Given the index i of the closest knot, we can define the normalized abscissa value
between qi and qi+1 as:

u =
s

∆x
−
⌊ s

∆x

⌋
. (3)

where b·c is the floor operator. From u we can compute the normalized reference
vector u =

[
uP uP−1 . . .u 1

]T , while from i we can extract the relevant control points
qi = [qi qi+1 . . .qi+P]

T . We refer to the vector qi as the ith span. The output (2) is then
computed as:

y = ϕ(s) = uT Bqi , (4)

where B ∈ R(P+1)×(P+1) is called the spline basis matrix. In this work, we use the
Catmull-Rom (CR) spline with P = 3, given by:

B =
1
2


−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0

 . (5)

Different bases give rise to alternative interpolation schemes, e.g. a spline defined by a
CR basis passes through all the control points, but its second derivative is not continu-
ous.

Apart from the locality of the output, SAFs have two additional interesting prop-
erties. First, the output in (4) is extremely efficient to compute, involving only vector-
matrix products of very small dimensionality. Secondly, derivatives with respect to the
internal parameters are equivalently simple and can be written down in closed form. In
particular, the derivative of the nonlinearity ϕ(s) with respect to the input s is given by:

∂ϕ(s)
∂ s

= ϕ
′(s) =

∂ϕ(s)
∂u

· ∂u
∂ s

=

(
1

∆x

)
u̇Bqi , (6)

where:

u̇ =
∂u
∂u

=
[
PuP−1 (P−1)uP−2 . . .1 0

]T
. (7)
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Given this, the derivative of the SAF output y with respect to w is straightforward:

∂ϕ(s)
∂w

= ϕ
′(s) · ∂ s

∂w
= ϕ

′(s)x , (8)

Similarly, for qi we obtain:

∂ϕ(s)
∂qi

= BT u . (9)

while we have ∂ϕ(s)
∂qk

= 0 for any element qk outside the current span qi.

3 Designing networks with SAF neurons

3.1 Computing outputs and inner derivatives

Now we consider the more elaborate case of a single hidden layer NN, with a D-
dimensional input, H neurons in the hidden layer, and O output neurons.1 Every neuron
in the network uses a SAF with possibly different adaptive control points, which are
set independently during the training process. For easiness of computation, we suppose
that the sampling set of the splines is the same for every neuron (i.e., each neuron has
Q points equispaced according to the same ∆x), and we also have a single shared basis
matrix B. The forward phase of the network is similar to that of a standard network.
In particular, given the input x, we first compute the output of the ith hidden neuron,
i = 1, . . . ,H, as:

hi = ϕ(wT
hi

x;qhi) . (10)

These are concatenated in a single vector h = [h1, . . . ,hH ,1]
T , and the ith output of the

network, i = 1, . . . ,O, is given by:

fi(x) = yi = ϕ(wT
yi

h;qyi) . (11)

The derivatives with respect to the parameters
{

wyi ,qyi

}
, i = 1, . . . ,O can be computed

directly with (8)-(9), substituting x with h. By back-propagation, the derivative of the
ith output with respect to the jth (inner) weight vector wh j is similar to a standard NN:

∂y j

∂whi

= ϕ
′(sy j) ·ϕ

′(shi) · bwhic j ·x , (12)

where with a slight abuse of notation we let sy j denote the activation of the jth output
(and similarly for shi ), b·c j extracts the jth element of its input vector, and the two ϕ ′(·)
are given by (6). For the derivative of the control points of the ith hidden neuron, denote
by qhi,k the currently active span, and by uhi the corresponding reference vector. The
derivative with respect to the jth output is then given by:

∂y j

∂qhi,k
= ϕ

′(sy j) · bwhic j ·BT uhi . (13)

1We note that the following treatment can be extended easily to the case of a network with
more than one hidden layer. However, restricting it to a single layer allow us to keep the discussion
focused on the problems/advantages arising in the use of SAFs. We leave this extension to a future
work.
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3.2 Initialization of the control points

An important aspect that we have not discussed yet is how to properly initialize the
control points. One immediate choice is to sample their values from an AF which is
known to work well on the given problem, e.g. a hyperbolic tangent. In this way, the
network is guaranteed to work similarly to a standard NN in the initial phase of learning.
Additionally, we have found good improvements in error by adding Gaussian noise
N (0,σ2) with small variance σ2 to a randomly chosen subset of control points (around
5% in our experiments). This provides a good variability in the beginning, similarly to
how connections are set close to (but not identically equal to) zero during initialization.

3.3 Choosing a training criterion

Suppose we are provided with a training set of N input/output pairs in the form {xi,di}N
i=1.

For simplicity of notation, we denote by w the concatenation of all weight vectors
{

whi

}
and

{
wyi

}
, and by q a similar concatenation of all control points. Training can be for-

mulated as the minimization of the following cost function:

J(w,q) =
1
N

N

∑
i=1

L(di, f(xi))+λwRw(w)+λqRq(q) , (14)

where L(·, ·) is an error function, while Rw(·) and Rq(·) provide meaningful regular-
ization on the two set of parameters. The first two terms are well-known in the neural
network literature [7], and they can be set accordingly. Particularly, in our experiments
we consider a squared error term L(di, f(xi)) = ‖di− f(xi)‖2

2, and `2 regularization on
the weights Rw(w) = ‖w‖2

2. The derivatives of L(·, ·) can be computed straightforwardly
with the formulas presented in Section 3.1.

The term Rq(q) is used to avoid overfitted solutions for the control points. In fact,
its presence is the major difference with respect to previous attempts at implementing
SAFs in neural networks [17], wherein overfitting was counterbalanced by choosing a
large value for ∆x, which in a way goes outside the philosophy of spline interpolation
itself. At the same time, choosing a proper form for the regularization term is non-trivial,
as the term should be cheap to compute, and it should introduce just as much a priori
information as needed, without hindering the training process. Most of the literature
on regularizing w cannot be used here, as the corresponding formulations do not make
sense in the context of spline interpolation. As an example, simply penalizing the `2
norm of q leads to functions close to the zero function, while imposing sparsity is also
meaningless.

For the purpose of this paper, we consider the following ‘damping’ criterion:

Rq(q) = ‖q−qo‖2
2 , (15)

where qo represents the initial values for the control points, as discussed in the previous
section (without considering additional noise). The criterion makes intuitive sense as
follows: while for w we wish to penalize unwanted deviations from very small weights
(which can be justified with arguments from learning theory), in the case of q we are
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interested in penalizing changes with respect to a ‘good’ function parameterized by the
initial control points qo, namely one of the standard AFs used in NN training. In fact,
setting a value for λq very high essentially deactivates the adaptation of the control
points. Clearly, other choices are possible, and in this sense this paper serves as a start-
ing point for further investigations towards this objective. As an example, we may wish
to penalize first (or second) order derivatives of the splines in order to force a desired
level of smoothness [18].

3.4 Remarks on the implementation

In order to be usable in practice, SAFs require an efficient implementation to compute
outputs and derivatives concurrently for the entire training dataset or, alternatively, for a
properly chosen mini-batch (in the case of stochastic optimization algorithms). To begin
with, we underline that the equations for the reference vector (see (3)) do not depend on
the specific neuron, and for this reason they can easily be vectorized layer-wise on most
numerical algebra libraries to obtain all vectors concurrently. Additionally, the indexes
and relative terms Bqi in (4) can be cached during the forward pass, to be reused during
the computation of the derivatives. In this sense, the outputs of a layer and its derivatives
can be computed by one 4×4 matrix-vector computation, and three 4-dimensional inner
products, which have to be repeated for every pair input/neuron. In our experience,
the cost of a relatively well-optimized implementation does not exceed twice that of a
standard network for medium-sized batches, where the most onerous operation is the
reshaping of the gradients in (9) and (13) into a single vector of gradients relative to the
global vector q.

4 Experimental results

4.1 Experimental setup

To evaluate the preliminary proposal, we consider two simple regression benchmarks
for neural networks, the ‘chemical’ dataset (included among MATLAB’s testbeds for
function fitting), and the ‘California Housing’.2 They have respectively 498 and 20640
examples, and 8 numerical features. Inputs are normalized in the [−1,+1] range, while
outputs are normalized in the [−0.5,+0.5] range. We compare a NN with 5 hidden neu-
rons and tanh(·) AFs (denoted as ‘Standard’ in the results), and a NN with the same
number of neurons and SAF nonlinearities. The weight vector w is initialized with the
method described in [4]. Each SAF is initialized from a tanh(·) nonlinearity, and control
points are defined in the [−2,+2] range with ∆x = 0.2, which is a good compromise
between locality of the SAFs and the overall number of adaptable parameters. For the
first scenario, λq is kept to a small value of 10−5. For each experiment, a random 30%
of the dataset is kept for testing, and results are averaged over 15 different splits to aver-
age out statistical effects. Error is computed with the Normalized Root Mean-Squared
Error (NRMSE). The optimization problems are solved using a freely available MAT-
LAB implementation of the Polack-Ribiere variant of the nonlinear conjugate gradient

2http://www.dcc.fc.up.pt/˜ltorgo/Regression/cal_housing.html

http://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
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Table 1. Average results for scenario 1 (λw = 1), together with one standard deviation.

Dataset Nonlinearity Tr. RMSE T.st NRMSE

Chemical
Standard 1.00±0.00 1.00±0.01
SAF 0.29±0.02 0.31±0.02

Calhousing
Standard 1.02±0.00 1.01±0.01
SAF 0.56±0.01 0.57±0.02

optimization algorithm by C.E. Rasmussen. [12].3 The optimization process is allowed
1500 maximum iterations. MATLAB code for the experiments is also available on the
web.4 We briefly remark that the MATLAB library, apart from repeating the exper-
iments presented here, is also designed to handle networks with more than a single
hidden layer, and implements the ADAM algorithm [8] for stochastic training in case
of a larger dataset.

4.2 Scenario 1: strong underfitting

As a first example, we consider a scenario of strong underfitting, wherein the user has
misleadingly selected a very large value of λw = 1, leading in turn to extremely small
values for the elements of w after training. Results in terms of training and test RMSE
are provided in Tab. 1. Since the activations of the NN tend to be very close to 0 (where
the hyperbolic tangent operates in an almost-linear regime), standard NNs have a con-
stant zero output, leading to a RMSE of 1. Nonetheless, SAF networks are able to reach
a very satisfactory level of performance, which in the first case is almost comparable to
that of a fully optimized network (see the following section).

To show the reasons for this, we have plotted four representative nonlinearities after
training in Fig. 1. It is easy to see that the nonlinearities have adapted to act as ‘ampli-
fiers’ for the activations in their operating regime, with mild and strong peaks around 0.
Of particular interest is the fact that the resulting SAFs need not be perfectly centered
around 0 (e.g. Fig. 1c), or even symmetrical around the y-axis (e.g. Fig. 1d). In fact, the
splines are able to efficiently counterbalance a bad setting for the weights, with behav-
iors which would be very hard (or close to impossible) using standard setups with fixed,
shared, mild nonlinearities.

4.3 Scenario 2: well-optimized parameters

In our second scenario, we consider a similar comparison with respect to before, but
we fine-tune the parameters of the two methods using a grid-search with a 3-fold cross-
validation on the training data as performance measure. Both λw and λq (only for the

3http://learning.eng.cam.ac.uk/carl/code/minimize/
4[The URL has been hidden for the review process.]

http://learning.eng.cam.ac.uk/carl/code/minimize/
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Fig. 1. Non-trivial representative SAFs after training for scenario 1.

Table 2. Optimal parameters (averaged over the runs) found by the grid-search procedure for
scenario 2.

Dataset Nonlinearity λw λq

Chemical
Standard 10−3 —
SAF 10−2 10−4

Calhousing
Standard 10−4 —
SAF 10−3 10−4

proposed algorithm) are searched in an exponential interval 2 j, with j = −10, . . . ,5.
Optimal parameters found by the grid-search are listed in Table 2, while results in terms
of training and test NRMSE are collected in Table 3.

Overall, we see that the NNs endowed with the SAF nonlinearities are able to sur-
pass by a large margin a standard NN, and the results from the previous scenario. The
only minor drawback evidenced in Table 3 is that the SAF network has some overfitting
occurring in the ‘chemical’ dataset (around 2 points of NRMSE), showing that there is
still some room for improvement in terms of spline optimal regularization.

Also in this case, we plot some representatives SAFs after training (taken among
those which are not trivially identical to the tanh nonlinearity) in Fig. 2. As before, in
general SAFs tend to provide an amplification (with a possible change of sign) of their
activation around some region of operation. It is interesting to observe that, also in this
case, the optimal shape need not be symmetric (e.g. Fig. 2a), and might even be far
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Table 3. Average results for scenario 2 (fine-tuning for parameters), together with one standard
deviation.

Dataset Nonlinearity Tr. RMSE T.st NRMSE

Chemical
Standard 0.32±0.01 0.32±0.02
SAF 0.26±0.01 0.28±0.02

Calhousing
Standard 0.55±0.01 0.55±0.01
SAF 0.51±0.02 0.51±0.02
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Fig. 2. Non-trivial representative SAFs after training for scenario 2.

from centered around 0 (e.g. Fig. 2c). Resulting nonlinearities can also present some
additional non-trivial behaviors, such as a small region of insensibility around 0 (e.g.
Fig. 2d), or a region of pre-saturation before the actual tanh saturation (e.g. Fig.s 2e-2f).

5 Conclusion

In this paper, we have presented a principled way to adapt the activation functions of a
neural network from training data, locally and independently for each neuron. Particu-
larly, each nonlinearity is implemented with cubic spline interpolation, whose control
points are adapted in the optimization phase. Overfitting is controlled by a novel `2 reg-
ularization criterion avoiding unwanted oscillations. Albeit efficient, this criterion does
constrain the shapes of the resulting functions by a certain degree. In this sense, the de-
sign of more advanced regularization terms is a promising line of research. Additionally,
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we plan on exploring the application of SAFs to deeper networks, where it is expected
that the statistics of the neurons’ activations can change significantly layer-wise [4].
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