Skip to main content

Reverse Engineering of Gene Regulatory Networks Combining Dynamic Bayesian Networks and Prior Biological Knowledge

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Abstract

An important problem in the Systems Biology field is the reverse engineering of gene regulatory networks from gene expression data. In this work, we addressed this problem using a probabilistic graphical model known as Dynamic Bayesian Network to model the regulatory relations among the genes. We also used a Boolean formalism, assuming that each gene can take on two possible values: 0 (not expressed) and 1 (expressed). To learn the Dynamic Bayesian Network from time-series gene expression data we search for the network structure that best matches the data using the Bayesian Information Criterion score and the BDe score and compared them. Besides that, we used a source of prior biological knowledge from a database named STRING, unlike most of the reverse engineering algorithms that does not take into account any source of additional information. The results show that this approach can improve the quality of the inferred networks, and we also showed that the Dynamic Bayesian Network performs better than its standard version, Bayesian Network.

Supported by CNPq and UFMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dougherty, E.R.: Validation of inference procedures for gene regulatory networks. Curr. Genomics 8(6), 351–359 (2007)

    Article  Google Scholar 

  2. DREAM: DREAM: Dialogue for Reverse Engineering Assessments and Methods (2009). http://wiki.c2b2.columbia.edu/dream/

  3. Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: 15th Annual Conference on Uncertainty in Artificial Intelligence, pp. 139–147. Morgan Kaufmann (1999)

    Google Scholar 

  4. Friedman, N., et al.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7(6), 601–620 (2000)

    Article  Google Scholar 

  5. Gao, S., Wang, X.: Quantitative utilization of prior biological knowledge in the Bayesian network modeling of gene expression data. BMC Bioinf. 12(1), 359+ (2011)

    Article  Google Scholar 

  6. Goodwin, B.C.: Temporal Organization in Cells; A Dynamic Theory of Cellular Control Process. Academic Press, Cambridge (1963)

    Google Scholar 

  7. Hecker, M., et al.: Gene regulatory network inference: data integration in dynamic models - a review. BioSystems 96, 86–103 (2009)

    Article  Google Scholar 

  8. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 2(3), 197–243 (1995)

    MATH  Google Scholar 

  9. Huang, S., Ernberg, I., Kauffman, S.: Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin. Cell Dev. Biol. 20(7), 869–876 (2009)

    Article  Google Scholar 

  10. Kanehisa, M., Goto, S., Kawashima, S., Nakaya, A.: The KEGG databases at GenomeNet. Nucleic Acids Res. 30, 42–46 (2002)

    Article  Google Scholar 

  11. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks. Nature 9, 770–780 (2008)

    Google Scholar 

  12. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  13. Koike, C.Y., Higa, C.H.A.: Inference of gene regulatory networks using coefficient of determination, Tsallis entropy and biological prior knowledge. In: Proceedings of the IEEE 16th International Conference on Bioinformatics and Bioengineering (2016)

    Google Scholar 

  14. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques, 1st edn. MIT Press, Cambridge (2012)

    Google Scholar 

  15. Li, F., Long, T., Lu, Y., Ouyang, Q., Thang, C.: The yeast cell-cycle network is robustly designed. PNAS USA 101(14), 4781–4786 (2004)

    Article  Google Scholar 

  16. Li, Y., Liu, L., Bai, X., Cai, H., Ji, W., Guo, D., Zhu, Y.: Comparative study of discretization methods of microarray data for inferring transcriptional regulatory networks. BMC Bioinf. 11(1), 520+ (2010)

    Article  Google Scholar 

  17. Linde, J., Schulze, S., Henkel, S.G., Guthke, R.: Data and knowledge-based modeling of gene regulatory networks: an update. EXCLI J. 14, 346–378 (2015)

    Google Scholar 

  18. Locke, J.C.W., Millar, A.J., Turner, M.S.: Modelling genetic networks with noisy and varied experimental data: the circadian clock in Arabidopsis thaliana. J. Theor. Biol. 234(3), 383–393 (2005)

    Article  MathSciNet  Google Scholar 

  19. Madhamshettiwar, P.B., Maetschke, S.R., Davis, M.J., Reverter, A., Ragan, M.A.: Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Med. 4(5), 1–16 (2012)

    Article  Google Scholar 

  20. von Mering, C., Jensen, L.J., Snel, B., Hooper, S.D., Krupp, M., Foglierini, M., Jouffre, N., Huynen, M.A., Bork, P.: STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 33(Database issue), D433–D437 (2005)

    Article  Google Scholar 

  21. Russell, S.J., Binder, J., Koller, D., Kanazawa, K.: Local learning in probabilistic networks with hidden variables. In: IJCAI, pp. 1146–1152 (1995)

    Google Scholar 

  22. Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235), 467–470 (1995)

    Article  Google Scholar 

  23. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  Google Scholar 

  24. Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998)

    Article  Google Scholar 

  25. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., Kuhn, M., Bork, P., Jensen, L.J., von Mering, C.: STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(Database issue), D447–D452 (2015)

    Article  Google Scholar 

  26. Wang, Z., Xu, W., Lucas, F., Liu, Y.: Incorporating prior knowledge into gene network study. Bioinformatics 29(20), 2633–2640 (2013)

    Article  Google Scholar 

  27. Wang, Z., Gerstein, M., Snyder, M.: RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10(1), 57–63 (2009)

    Article  Google Scholar 

  28. Webb, A.R.: Statistical Pattern Recognition, 2nd edn. Wiley, Hoboken (2002)

    Book  Google Scholar 

  29. Werhli, A.V., Husmeier, D.: Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol. 6(1), 15 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This research was supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and UFMS (Universidade Federal de Mato Grosso do Sul).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos H. A. Higa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Souza, M.C., Higa, C.H.A. (2018). Reverse Engineering of Gene Regulatory Networks Combining Dynamic Bayesian Networks and Prior Biological Knowledge. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10960. Springer, Cham. https://doi.org/10.1007/978-3-319-95162-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95162-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95161-4

  • Online ISBN: 978-3-319-95162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics