Skip to main content

A Total Variation Diminishing Hopmoc Scheme for Numerical Time Integration of Evolutionary Differential Equations

  • Conference paper
  • First Online:
Book cover Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Abstract

This paper concentrates on a total variation diminishing Hopmoc scheme for numerical time integration of evolutionary differential equations. The Hopmoc method for numerical integration of parabolic partial differential equations with convective dominance is based on the concept of spatially decomposed meshes used in the Hopscotch method. In addition, the Hopmoc method uses the concept of integration along characteristic lines in a Semi-Lagrangian scheme based on the Modified Method of Characteristics. This work employs Total Variation Diminishing schemes in order to increase accuracy of the Hopmoc method. Thus, this paper shows that the Hopmoc method in conjunction with a Total Variation Diminishing scheme provides effective improvements over the original Hopmoc method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cabral, F.L., Osthoff, C., Costa, G., Brandão, D.N., Kischinhevsky, M., Gonzaga de Oliveira, S.L.: Tuning up TVD HOPMOC method on Intel MIC Xeon Phi architectures with Intel Parallel Studio tools. In: 2017 29th International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW), Campinas, pp. 19–24 (2017). https://ieeexplore.ieee.org/document/8109000/

  2. Ding, H., Zhang, Y.: A new difference scheme with high accuracy and absolute stability for solving convectiondiffusion equations. J. Comput. Appl. Math. 230, 600–606 (2009)

    Article  MathSciNet  Google Scholar 

  3. Holstad, A.: The Koren upwind scheme for variable gridsize. Appl. Numer. Math. 37, 459–487 (2001)

    Article  MathSciNet  Google Scholar 

  4. Kischinhevsky, M.: An operator splitting for optimal message-passing computation of parabolic equation with hyperbolic dominance. In: SIAM Annual Meeting, Kansas City, MO (1996)

    Google Scholar 

  5. Kischinhevsky, M.: A spatially decoupled alternating direction procedure for convection-diffusion equations. In: Proceedings of the XXth CILAMCE Iberian Latin American Congress on Numerical Methods in Engineering (1999)

    Google Scholar 

  6. Gane, C.R., Gourlay, A.R.: Block hopscotch procedures for second order parabolic differential equations. J. Inst. Math. Appl. 19, 205–216 (1977)

    Article  MathSciNet  Google Scholar 

  7. Gordon, P.: Nonsymmetric difference equations. SIAM J. Appl. Math. 13, 667–673 (1965)

    Article  MathSciNet  Google Scholar 

  8. Gourlay, A.R.: Hopscotch: a fast second order partial differential equation solver. IMA J. Appl. Math. 6, 375–390 (1970)

    Article  MathSciNet  Google Scholar 

  9. Gourlay, A.R., McGuire, G.R.: General Hopscotch algorithm for the numerical solution of partial differential equations. J. Inst. Math. Appl. 7, 216–227 (1971)

    Article  MathSciNet  Google Scholar 

  10. Gourlay, A.R., McKee, S.: The construction of Hopscotch methods for parabolic and elliptic equations in two space dimensions with mixed derivative. J. Comput. Appl. Math. 3, 201–206 (1977)

    Article  MathSciNet  Google Scholar 

  11. Douglas Jr., J., Russel, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MathSciNet  Google Scholar 

  12. Celia, M.A., Russel, T.F., Herrera, I., Ewing, R.E.: An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation. Adv. Water Resour. 13, 187–206 (1990)

    Article  Google Scholar 

  13. Russel, T.F., Celia, M.A.: An overview of research on Eulerian-Lagrangian localized adjoint methods (ELLAM). Adv. Water Resour. 25, 1215–1231 (2002)

    Article  Google Scholar 

  14. Cabral, F.L., Osthoff, C., Kischinhevsky, M., Brandão, D.: Hybrid MPI/OpenMP/OpenACC implementations for the solution of convection diffusion equations with Hopmoc method. In: Apduhan, B., Rocha, A.M., Misra, S., Taniar, D., Gervasi, O., Murgante, B. (eds.): 14th International Conference on Computational Science and its Applications (ICCSA) CPS, 196–199. IEEE, July 2014

    Google Scholar 

  15. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  Google Scholar 

  16. Bartels, S., Nochetto, R.H., Salgado, A.J.: A total variation diminishing interpolation operator and applications. Math. Comput. 84, 2569–2587 (2015)

    Article  MathSciNet  Google Scholar 

  17. Fernandes, B.R.B., Gonçalves, A.D.R., Filho, E.P.D., Lima, I.C.M., Marcondes, F., Sepehrnoori, K.: A 3D total variation diminishing scheme for compositional reservoir simulation using the element-based finite-volume method. Numer. Heat Transfer, Part A 67(8), 839–856 (2015)

    Article  Google Scholar 

  18. Oliveira, S.R.F., Gonzaga de Oliveira, S.L., Kischinhevsky, M.: Convergence analysis of the Hopmoc method. Int. J. Comput. Math. 86, 1375–1393 (2009)

    Article  MathSciNet  Google Scholar 

  19. Thuburn, J.: TVD schemes, positive schemes and universal limiter. Mon. Weather Rev. 125, 1990–1993 (1997)

    Article  Google Scholar 

  20. Courant, R., Isaacson, E., Rees, M.: On the solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pure Appl. Math. 5(3), 243–255 (1952)

    Article  MathSciNet  Google Scholar 

  21. Waterson, N.P., Deconinck, H.: Design principles for bounded higher-order convection schemes - a unified approach. J. Comput. Phys. 224, 182–207 (2007)

    Article  MathSciNet  Google Scholar 

  22. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)

    Article  MathSciNet  Google Scholar 

  23. Roe, P.L., Baines, M.J.: Algorithms for advection and shock problems. In: Viviand, H. (ed.): Proceedings of the Fourth GAMM Conference on Numerical Methods in Fluid Mechanics. Notes on Numerical Fluid Mechanics, vol. 5, pp. 281–290. Vieweg, Paris, France (1982)

    Google Scholar 

  24. Roe, P.L.: Some contributions to the modelling of discontinuous flows. In: Engquist, B.E., Osher, S., Somerville, R.C.J. (eds.): Proceedings of the Fifteenth Summer Seminar on Applied Mathematics Large-Scale Computations in Fluid Mechanics. Lectures in Applied Mathematics, vol. 22, pp. 163–193. AMS-SIAM Summer Seminar, American Mathematical Society, La Jolla, CA (1985)

    Google Scholar 

  25. van Leer, B.: Towards the ultimate conservative difference schemes. J. Comput. Phys. 14, 361–370 (1974)

    Article  Google Scholar 

  26. Koren, B.: A robust upwind discretization method for advection, diffusion and source terms. In: Vreugdenhil, C.B., Koren, B. (eds.) Numerical Methods for Advection - Diffusion Problems. Notes on Numerical Fluid Mechanics, vol. 45, pp. 117–138. Friedrich Vieweg & Sohn Verlagsgesellschaft, Braunschweig, Germany, October 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanderson L. Gonzaga de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brandão, D.N., Gonzaga de Oliveira, S.L., Kischinhevsky, M., Osthoff, C., Cabral, F. (2018). A Total Variation Diminishing Hopmoc Scheme for Numerical Time Integration of Evolutionary Differential Equations. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10960. Springer, Cham. https://doi.org/10.1007/978-3-319-95162-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95162-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95161-4

  • Online ISBN: 978-3-319-95162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics