Skip to main content

Optimization of the Choice of Individuals to Be Immunized Through the Genetic Algorithm in the SIR Model

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Abstract

Choosing which part of a population to immunize is an important and challenging task when fighting epidemics. In this paper we present an optimization methodology to assist the selection of a group of individuals for vaccination in order to restrain the spread of an epidemic. The proposed methodology is to build over the SIR (Susceptible/Infected/Recovered) epidemiological model combined to a genetic algorithm. The results obtained by the application of the methodology to a set of individuals modeled as a complex network show that the immunization of individuals chosen by the implemented genetic algorithm causes a significant reduction in the number of infected ones during the epidemic when compared to the vaccination of individuals based on a traditionally studied topological property, namely, the PageRank of individuals. This suggests that the proposed methodology has a high potential to be applied in real world contexts, where the number of vaccines is reduced or there are limited resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabási, A.L.: Network Science. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  2. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bucur, D., Iacca, G.: Influence maximization in social networks with genetic algorithms. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 379–392. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31204-0_25

    Chapter  Google Scholar 

  4. Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under the linear threshold model. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 88–97. IEEE (2010)

    Google Scholar 

  5. Darwin, C., Wallace, A.: On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Zool. J. Linn. Soc. 3(9), 45–62 (1858)

    Article  Google Scholar 

  6. Control of the Centers for Disease Control and Prevention, et al.: A CDC framework for preventing infectious diseases. Sustaining the essentials and innovating for the future. CDC, Atlanta (2011)

    Google Scholar 

  7. Hagberg, A., Schult, D., Swart, P.: NetworkX library developed at the Los Alamos national laboratory labs library (DOE) by the university of California (2004). https://networkx.lanl.gov

  8. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

    Google Scholar 

  9. Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_91

    Chapter  Google Scholar 

  10. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 115, 700–721 (1927)

    Article  Google Scholar 

  11. Mitchell, M.: An Introduction to Genetic Algorithms. MIT press, Cambridge (1998)

    MATH  Google Scholar 

  12. Newman, M.E.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016128 (2002)

    Article  MathSciNet  Google Scholar 

  13. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Tech. rep, Stanford InfoLab (1999)

    Google Scholar 

  14. Rossetti, G., Milli, L., Rinzivillo, S., Sîrbu, A., Pedreschi, D., Giannotti, F.: NDlib: a python library to model and analyze diffusion processes over complex networks. Int. J. Data Sci. Analytics 5, 1–19 (2017)

    Google Scholar 

  15. Trottier, H., Philippe, P.: Deterministic modeling of infectious diseases: theory and methods. Internet J. Infect. Dis. 1(2), 3 (2001)

    Google Scholar 

  16. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Ribeiro Xavier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodrigues, R.F., da Silva, A.R., da Fonseca Vieira, V., Xavier, C.R. (2018). Optimization of the Choice of Individuals to Be Immunized Through the Genetic Algorithm in the SIR Model. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10961. Springer, Cham. https://doi.org/10.1007/978-3-319-95165-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95165-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95164-5

  • Online ISBN: 978-3-319-95165-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics