
CUDA Support in GNA Data Analysis
Framework

Anna Fatkina, Maxim Gonchar, Liudmila Kolupaeva, Dmitry Naumov, and
Konstantin Treskov

Joint Institute for Nuclear Research,
Joliot-Curie, 6, Dubna, Moscow region, Russia, 141980

Abstract. Usage of GPUs as co-processors is a well-established ap-
proach to accelerate costly algorithms operating on matrices and vectors.
We aim to further improve the performance of the Global Neutrino Anal-
ysis framework (GNA) by adding GPU support in a way that is trans-
parent to the end user. To achieve our goal we use CUDA, a state of the
art technology providing GPGPU programming methods.
In this paper we describe new features of GNA related to CUDA support.
Some specific framework features that influence GPGPU integration are
also explained. The paper investigates the feasibility of GPU technology
application and shows an example of the achieved acceleration of an al-
gorithm implemented within framework. Benchmarks show a significant
performance increase when using GPU transformations.
The project is currently in the developmental phase. Our plans include
implementation of the set of transformations necessary for the data anal-
ysis in the GNA framework and tests of the GPU expediency in the
complete analysis chain.

Keywords: CUDA, GPGPU, parallel computing, data analysis, neutrino

1 Introduction

The neutrino is weakly interacting neutral fermion. There are three types of
these particles ν1, ν2 and ν3 with masses m1, m2 and m3, respectively. These
particles interact with charged leptons (electron, muon and tau) with interaction
strengths determined by elements Vαi of the lepton mixing matrix V , named after
Pontecorvo-Maki-Nakagawa-Sakata.

Two facts, that neutrino masses are all different and that V is not a diag-
onal matrix, lead to a spectacular quantum mechanical phenomenon known as
neutrino oscillations. Its firm experimental confirmation was celebrated by the
2015 Nobel Prize in physics and the 2016 Breakthrough Prize in Fundamental
Physics [1,2,3].

Neutrino physics entered the stage of precision measurements and addressing
remained open questions: neutrino mass hierarchy, if neutrino is Majorana par-
ticle, and others. Both require an accurate, fast and flexible tool for a combined

ar
X

iv
:1

80
4.

07
68

2v
1 

 [
cs

.D
C

] 
 2

0 
A

pr
 2

01
8



analysis of neutrino world data. Our team began a development of the corre-
sponding software GNA based on our experience in Daya Bay [4] (‘Analysis D’),
JUNO [5] and NOvA [6] experiments.

GNA is an universal tool for building comprehensive physical models and
statistical data analysis, designed with neutrino experiments in mind. It was
initially created as software for the JUNO and Daya Bay experiments in a flexible
and efficient way. The name GNA stands for Global Neutrino Analysis, as the
package introduces tools for the combined analysis of the physical data. The
framework is described in more detail in the following section.

GPUs (Graphics Processing Units) are used today for a much wider range
of problems than simply processing graphics, including data analysis in sci-
ence [7,8]. Video cards can be used as co-processors on both personal computers
and high-performance servers. There exist free tools that provide an interface
for GPU programming such as CUDA [9], OpenACC [10] or OpenCL [11].

We have added CUDA support to the GNA framework in order to achieve
better performance during the processing of vector data. With this architecture
the input data is mapped on multiple threads that are executed in parallel. Be-
cause a GPU platform has hundreds of times more threads compared to modern
CPUs it is especially suitable for running data-parallel algorithms.

The CUDA Toolkit is developed by NVIDIA and supports only NVIDIA
graphics accelerators. This narrows the range of compatible acceleration devices
compared to other tools. Nevertheless, the CUDA Toolkit provides a number
optimized numerical routines. Also, NVIDIA GPUs are quite popular and are
widely used in common desktop computers and laptops.

It this paper we describe the way in which CUDA is integrated in GNA,
and its implications from both the end-user and developer points of view. Major
implementation details are discussed. A review of our future plans for GPU-based
development is also presented.

2 GNA Architecture

The computation process in GNA is represented by a directed graph in which
nodes represent functions and edges present the data flow. Nodes are called
transformations, which is an abstraction layer for C++ functions. They may
have inputs (arguments) and have at least one output (return values). Transfor-
mations typically operate on data arrays. A computational graph describes how
transformations interact with each other. Because transformations are encapsu-
lated and have universal interfaces a high flexibility is achieved.

Data analysis in GNA consists of two stages:

1. Configuration stage on which the computational graph is created.
2. Computational stage on which graph is evaluated.

In the first stage the transformation instances are created, and outputs and
inputs are bound together. This step is done only once within Python and is
flexible, but may be inefficient. The actual calculation happens on the second



GNA
GNA

User Interface

PyRoot

Common code

PythonPython

C++C++

user

Fig. 1: GNA architecture schematic diagram.

step. Calculations are done within compiled C++ code and are usually executed
repeatedly.

The generalized scheme of the framework is shown on Figure 1. GNA has
a Python user interface (UI) that is used for building computation chains. The
implementation of all transformations and the way they interact are described
in C++. These two parts are linked via PyRoot.

The user may manage the computational process by using transformations
already implemented in GNA. Transformations may also be written by users
themselves and added into the framework environment.

2.1 Transformation

A transformation is an encapsulated wrapper for a function that converts input
data into output.

Figure 2 schematically displays several kinds of transformations. Transfor-
mations may or may not have inputs (marked by arrows on the left side) and
must have at least one output (marked by arrows on the right side). Inputs and
outputs generally refer to data arrays. In addition to inputs transformation may
also depend on variables. A variable is a small input data type which usually
refers to a single number.

Actual data is allocated on the transformation outputs. Input data cannot
be changed inside the transformation, it is a read-only state for the output it is
connected to. It enables us to ensure that data will not be modified by following
transformations after it is computed. A transformation is computed only once
and the result may be used multiple times afterwards. It will be re-computed
only if any of the variables or inputs it depends on were modified.

There is a set of predefined transformations implemented in the GNA frame-
work. Because transformations are independent from each other the set may be



Transformation

(a)

Transformation

(b)

Transformation

(c)

Transformation

(d)

Fig. 2: Example of transformation kinds. Intermediate transformation (a) with
a single input and multiple outputs. Initial transformation (b) with multiple
outputs. Intermediate transformation (c) with multiple inputs and single output.
Intermediate transformation (d) with single input and single output.

straightforwardly extended by the users. The guidelines on how to do this are
provided in the framework documentation [12].

The typical computational chain that produces prediction for the reactor
antineutrino experiments contains hundreds of nodes and is evaluated within a
time frame on the order of 0.1 seconds to seconds. The prediction is a histogram
with 300 bins and depends overall on 250 independent parameters. The predic-
tion is then used in the process of multidimensional minimization, which takes
around 30 minutes for 15 free parameters or around 6 hours for all the model
parameters, most of which are constrained. Statistical analysis requires repeated
minimization and may take several days to evaluate confidence intervals. MC
based methods, such as Feldman-Cousins, require millions of minimization pro-
cedures and may take months when executed on a cluster. The framework is also
suitable for building more complex graphs with evaluation times on the order of
seconds to hours.

2.2 Computational graph

A computational graph is formed by a chain of transformations with inputs
connected to outputs. Figure 3 displays a simple example of such a graph. This
scheme shows that the same output may refer to and be referred by any number
of inputs. The graph may be configured in an arbitrary way, as long as data
types of the outputs are compatible with the requirements of the transformation
they are connected to.

The graph is constructed using Python. Users describe the way transforma-
tions are chained via Python script or from the command line interface. The
result of any transformation may be read at any moment through the Python
interface.



T1

T2 T4 T5

T3 T8

T6 T7

Fig. 3: Schematic example of the GNA computational graph.

Lazy evaluation means that the output of a transformation is computed on
demand if the output is read by a caller. In the case when the output of an inter-
mediate transformation is accessed only preceding transformations are evaluated,
not the entire graph.

2.3 Parallelism opportunities

Parallel computing is a well-known method to speed up the computational pro-
cess. There are methods to achieve performance increases on different levels.
The most efficient and safe method is to divide input data into smaller indepen-
dent datasets and execute the analysis on a distributed system [13,14]. However,
in real-world cases analysis of those datasets often takes a long time. Due to
this fact acceleration at an individual dataset level is also needed, and may be
implemented for multi-core CPUs or GPUs [15]. In this paper we consider the
prospects for acceleration of computations in GNA on a framework level using
GPGPU.

Figure 4 shows a part of a computational graph for the JUNO experiment
implementing the neutrino oscillation probability calculation (see section 4.1).
There are multiple OscProb transformation instances in the graph computing
the neutrino oscillation probability for various distances L, each of them de-
pending on a vector neutrino energy Eν . For the most practical cases Eν may
be computed only once. OscProb transformation instances are independent from
each other and bound to different parameters (variables) that may change their
output. Parallel technologies are applicable for graphs with such a structure,
since no data writing collision is possible.

The OscProb transformation, as well as most of the framework modules,
provide multi-dimensional array operations which are particularly suitable for
multi-threaded systems such as GPUs or multi-core CPUs if their elements are
computed independently.



Enu

OscProb 0

OscProb 1
L₁

OscProb 2
L₁

OscProb 3
L₁

OscProb 1
L₂

OscProb 2
L₂

OscProb 3
L₂

OscProb 1
L₃

OscProb 2
L₃

OscProb 3
L₃

... ... ... ...

Fig. 4: Neutrino oscillation probability calculation scheme. A part of JUNO com-
putational graph.

3 CUDA overview

CUDA (Compute Unified Device Architecture) is an architecture for parallel
data processing for NVIDIA GPUs. The average GPU has hundreds of times
more threads compared to modern CPUs. Threads run in parallel in SIMT (Sin-
gle Instruction, Multiple Threads) [16] manner as GPUs were originally created
for image processing — a vivid example of SIMT algorithms.

The CUDA Toolkit [17] has a set of specialized libraries optimized for their
purposes, such as cuBLAS (linear algebra), cuRAND (random number genera-
tors), cuDNN (deep neural networks), etc. It also provides high-level abstractions
to manage computational processes on GPUs, and low-level methods to tune it.

GPGPU’s main performance limitations are memory allocation and data
transfers, as the co-processor is an independent physical device. The copying of
data from Host (CPU and RAM) to Device (GPU) or vice versa is slow. Never-
theless, it is a powerful tool for accelerating algorithms that contain operations
with the same instruction applied to each element of an array, and producing
independent output.

4 GPU acceleration

4.1 Neutrino oscillation probability

In this section we consider an opportunity of achieving better performance for a
distinct transformation that calculates the neutrino oscillation probability [18].



The general formula for oscillation probability in vacuum, the probability
that neutrino flavor changes from να to νβ after travelling distance L, reads as
follows:

P (να → νβ) = δαβ − 4
∑
i>j

Re(V ∗
αiVβiVαjV

∗
βj) sin2

∆m2
ijL

4Eν
+

+ 2
∑
i>j

Im(V ∗
αiVβiVαjV

∗
βj) sin

∆m2
ijL

2Eν
,

where E denotes neutrino energy, L is a distance between neutrino source and
detector, Vαi is a complex unitary matrix called a Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix, and ∆m2

ij = m2
i −m2

j is a neutrino mass splitting.
Within GNA the oscillation probability is implemented as a set of transfor-

mations for each formula item respectively. Each transformation input is a vector
of neutrino energy values Eν .

The computations for different energy values are identical and independent
from each other, therefore they can run in parallel on a GPU. It should be
noted that the input array (neutrino energy), in most realistic cases, is known
beforehand and will be copied to the GPU only once while the computation is
performed for different oscillation parameter values.

The following features were used to port the oscillation probability code to
GPU:

– CUDA Streams [19],
– datasets are divided into smaller sizes to organize overlapped execution,
– asynchronous memory copying.

After porting the oscillation probability the result was verified: a difference be-
tween GPU and CPU output results is within the roundoff accuracy of the double
precision floating point numbers.

Results of the test with input energy vectors of sizes 104 and 106 elements
are presented in table 1. The calculation is performed with double precision on
Intel Core i7-6700HQ CPU and NVIDIA GeForce GTX 970M GPU. It should
be noted that a size of 104 elements corresponds to the JUNO experiment’s
case. First row contains the ratio of the full computation times for CPU-only

Input data size, elements 104 106

CPU time / (GPU computing + transfer time) 0.017 1.39

CPU time / GPU computing-only time 20.90 26.46

Table 1: Benchmarks for oscillation probability calculation on CPU and GPU
with input vectors sizes of 104 and 106 elements.



and GPU-oriented (including data transfer costs) versions of the algorithm. The
second row contains the ratio of the computation times (without data transfer
costs in GPU-based case).

When data transfer is taken into account the acceleration for the 106 sample
size is not significant. For the smaller sample the acceleration is not enough to
cover the overhead due to data transfer.

When data transfer is not taken into account the achieved acceleration is at
least ×20 compared to CPU case. Since the neutrino energy is computed only
once and then stored the latter is the more realistic case for this task.

The speed-up is expected to be more significant for larger datasets. At the
same time the data transfer overhead should be considered and handled appro-
priately in any case.

It should also be noted that single precision floating point operations are
typically much faster (dozens of times) on most GPUs when compared to double
precision. For CPUs the single precision is only twice as faster. Therefore a
significant speed-up is expected for cases when single precision is sufficient.

4.2 Computational chains with GPU-oriented transformations

The original CPU computational scheme was modified in such a way that switch-
ing between CPU- and GPU-oriented transformation modes is transparent for
the end user. The transformation is still a single object with two function def-
initions: one for the CPU and another for the GPU. On the UI side the GPU
computation is enabled by setting a single flag that changes the target device
of the transformation and switches the active function. Thus, users are enabled
to work with the GPU mode of GNA without any special knowledge about
GPGPU.

In order to handle data transfer we implemented a C++ wrapper for the GPU
array and defined several frequently used mathematical operations. The portion
of the framework that contains CUDA is built as a separate shared library. Then
the main code is built with this library as a dependency. This way GPU functions
may be called from the common C++ code. GPU related code may be switched
off completely by a special flag during the compilation of the framework.

Since memory allocation is one of GPGPU’s limitations within GNA, all re-
quired memory for both the GPU and CPU is allocated during the configuration
stage to avoid extra time costs in the runtime.

As described earlier, inputs are simply the views on the data of the corre-
sponding outputs of preceding transformations. The same feature is implemented
for the GPU arrays. There is no additional allocation on the GPU for the inputs
as it refers to the output it is bound to. The only exception to this rule is the
first GPU-oriented transformation in the computational subchain: an extra GPU
memory allocation for its inputs occurs because we need to transfer data from
Host memory to the Device.

We have extended the GNA internal data storage objects in order to maintain
a synchronized copy of Host data on the Device. The synchronization is done in



H2D

GPU: T1 . . . Tk

CPU: T0 Tk+1

D2H

Fig. 5: Schema of mixed (CPU and GPU) computational chain.

H2D

GPU: T1 . . . Tk

CPU: T0 read Tk+1

D2H D2H

Fig. 6: Reading an intermediate result from the GPU chain.

a lazy manner, i.e. it happens only when the unsynchronized Host data is read
from Device and vice versa.

Figure 5 shows the computation scheme in which the chain contains a subset
of GPU-based transformations. Only two data transfers between the Host and
the Device take place in this case: at the beginning of GPU subchain and at the
end of it. We minimize communication between Host and Device to cut the time
costs due to data copying since it is an expensive operation. The status of GPU
function, which indicates whether or not it was executed successfully, is available
on the Host side after the transformation computation is finished. Device-To-
Device data transfers may occur inside the transformations implementation, but
they are not considered to be costly.

Extra data transfers from Device to Host may be triggered by the user,
reading the data at any point of the computational chain as is shown in Figure 6.
In this case an extra data transfer occurs. The backward transfer is not needed.
Because user-triggered reading may occur during a debugging procedure or for
the plotting of data, the data transfer overhead in not significant in this case
when compared to the actual data analysis.



5 Future work

The major shortcoming of the current GPU support implementation is the lack
of fault tolerance. In the case of GPU failure the computation will be aborted.

H2D

GPU: T1 . . . Tk

CPU: T0 T1 . . . Tk Tk+1

Fig. 7: Computational process recovery on CPU after GPU fault.

We are planning to add a feature of switching the computation between
CPU and GPU modes automatically during runtime as is shown in Figure 7. It
is assumed that the deceleration of the algorithm execution is more preferred
than aborting it.

Another planned feature is adding checkpoints for the GPU side of the frame-
work. It will decrease latency time for recovering the computation crashed on
GPU side. This implies that data will regularly be synchronized between Host
and Device. Since this may lead to an additional overhead the existence and
frequency of the checkpoints will be configurable.

In order to use a GPU for the computational chain in a real analysis a
subset of existing transformations should be ported to the GPU. Not every
algorithm will be ported, however. The choice will be made based on analysis of
the computational chains of the Daya Bay and JUNO experiments. As a sufficient
set of transformations is ported we will benchmark the GPU-enabled version of
GNA on several realistic computational schemes with various configurations and
floating point precision settings.

Since the data transfer costs may negate performance improvement of GPU-
enabled computational chain the actual choice of the configuration should be
made and tested by the end-user, based on a particular computational chain.
Specialized benchmarking tools will be implemented in GNA to simplify this
task.

6 Conclusion

In this paper we describe the GPU support within the GNA framework imple-
mented via the CUDA architecture with transparency for the end-user. For the
particular case of neutrino oscillation probability it has been demonstrated that



the achieved acceleration may be of order of ×20 for double precision floating
point numbers.

While the realistic acceleration for the large computational chains may be
lower and may depend on a particular chain, the prospects look very promising.
Significant improvement is expected when single precision is sufficient for the
task. An acceleration obtained in case of single precision is usually much higher
for GPUs compared to CPUs. The corresponding studies and benchmarks will
be performed in further work.

The solutions to the major problems and limitations, such as memory allo-
cation and data transfer are discussed.

Acknowledgements

We are grateful to Chris Kullenberg for reading the manuscript and for valuable
suggestions.

This research is supported by the Russian Foundation for Basic Research
(projects no. 18-32-00935 and 16-07-00886) and by the Association of Young
Scientists and Specialists of Joint Institute for Nuclear Research (grant no. 18-
202-08).

The manuscript has been submitted to ICCSA 2018 (Lecture Notes in Com-
puter Science, publisher: Springer Verlag).

References

1. T. Ohlsson, Nuclear Physics B 908, 1 (2016).
2. T. Kajita, Reviews of Modern Physics 88, 030501 (2016).
3. A. B. McDonald, Reviews of Modern Physics 88, 030502 (2016).
4. Daya Bay, F. P. An et al., Phys. Rev. D95, 072006 (2017), 1610.04802.
5. JUNO, F. An et al., J. Phys. G43, 030401 (2016), 1507.05613.
6. NOvA, P. Adamson et al., Phys. Rev. Lett. 118, 231801 (2017), 1703.03328.
7. M. Al-Turany, F. Uhlig, and R. Karabowicz, Journal of Physics: Conference Series

219, 042001 (2010).
8. A. Fatkina, O. Iakushkin, and N. Tikhonov, Application of GPGPUs and multicore

CPUs in optimization of some of the MpdRoot codes, in 25th Russian Particle
Accelerator Conf.(RuPAC’16), St. Petersburg, Russia, November 21-25, 2016, pp.
416–418, JACOW, Geneva, Switzerland, 2017.

9. J. Nickolls, I. Buck, M. Garland, and K. Skadron, Queue 6, 40 (2008).
10. R. Farber, Parallel programming with OpenACC (Newnes, 2016).
11. L. Howes and A. Munshi, Khronos Group (2015).
12. GNA group, GNA documentation, http://gna.pages.jinr.ru/gna/.
13. M. Ballintijn, R. Brun, F. Rademakers, and G. Roland, arXiv preprint

physics/0306110 (2003).
14. I. Gankevich, Y. Tipikin, and V. Korkhov, Subordination: Providing resilience

to simultaneous failure of multiple cluster nodes, in Proceedings of International
Conference on High Performance Computing Simulation (HPCS’17), pp. 832–838,
NJ, USA, 2017, Institute of Electrical and Electronics Engineers (IEEE).

http://gna.pages.jinr.ru/gna/


15. O. Iakushkin, A. Fatkina, A. Degtyarev, and V. Grishkin, Application of multi-
core architecture to the MPDRoot package for the task tof events reconstruction,
in International Conference on Computational Science and Its Applications, pp.
428–437, Springer, 2017.

16. E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, IEEE micro 28 (2008).
17. Nvidia, CUDA, (2007).
18. C. Giunti and C. W. Kim, Fundamentals of neutrino physics and astrophysics

(Oxford university press, 2007).
19. J. Gómez-Luna, J. M. González-Linares, J. I. Benavides, and N. Guil, J. Parallel

Distrib. Comput 72, 1117 (2012).


	CUDA Support in GNA Data Analysis Framework

