Skip to main content

Formal Modeling of the Key Determinants of Hepatitis C Virus (HCV) Induced Adaptive Immune Response Network: An Integrative Approach to Map the Cellular and Cytokine-Mediated Host Immune Regulations

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Abstract

HCV is a major causative agent of liver infection and is the leading cause of Hepatocellular carcinoma (HCC). To understand the complexity in interactions within the HCV induced immune signaling networks, a logic-based diagram is generated based on multiple reported interactions. A simple conceptual framework is presented to explore the key determinants of the immune system and their functions during HCV infection. Furthermore, an abstracted sub-network is modeled qualitatively which consists of both the key cellular and cytokine components of the HCV induced immune system. In the presence of NS5A protein of HCV, the behaviors and the interplay amongst the natural killer (NK) and T regulatory (Tregs) cells along with cytokines such as IFN-γ, IL-10, IL-12 are predicted. The overall modelling approach followed in this study comprises of prior knowledge-based logical interaction network, network abstraction, parameter estimation, regulatory network construction and analysis through state graph, enabling the prediction of paths leading to both, disease state and a homeostatic path/cycle predicted based on maximum betweenness centrality. To study the continuous dynamics of the network, Petri net (PN) model was generated. The analysis implicates the critical role of IFN-γ producing NK cells in recovery while, the role of IL-10 and IL-12 in pathogenesis. The predictive ability of the model implicates that IL-12 has a dual role under varying circumstances and leads to varying disease outcomes. This model attempts to reduce the noisy biological data and captures a holistic view of the key determinants of the HCV induced immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lechmann, M., et al.: Hepatitis C virus–like particles induce virus specific humoral and cellular immune responses in mice. Hepatology 34(2), 417–423 (2001)

    Article  Google Scholar 

  2. Cento, V., Chevaliez, S., Perno, C.F.: Resistance to direct-acting antiviral agents: clinical utility and significance. Curr. Opin. HIV AIDS 10(5), 381–389 (2015)

    Article  Google Scholar 

  3. Ahmad, J., et al.: Formal modeling and analysis of the mal-associated biological regulatory network: insight into cerebral malaria. PLoS ONE 7(3), e33532 (2012)

    Article  Google Scholar 

  4. Bernot, G., et al.: Application of formal methods to biological regulatory networks: extending Thomas’ asynchronous logical approach with temporal logic. J. Theor. Biol. 229(3), 339–347 (2004)

    Article  MathSciNet  Google Scholar 

  5. Rehermann, B.: Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. J. Clin. Investig. 119(7), 1745–1754 (2009)

    Article  Google Scholar 

  6. Moradpour, D., Penin, F., Rice, C.M.: Replication of hepatitis C virus. Nat. Rev. Microbiol. 5(6), 453 (2007)

    Article  Google Scholar 

  7. Bartenschlager, R., Lohmann, V., Penin, F.: The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nat. Rev. Microbiol. 11(7), 482 (2013)

    Article  Google Scholar 

  8. Samaga, R., Klamt, S.: Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks. Cell Commun. Signal. 11(1), 43 (2013)

    Article  Google Scholar 

  9. Rosen, H.R.: Emerging concepts in immunity to hepatitis C virus infection. J. Clin. Investig. 123(10), 4121 (2013)

    Article  Google Scholar 

  10. Thimme, R., Binder, M., Bartenschlager, R.: Failure of innate and adaptive immune responses in controlling hepatitis C virus infection. FEMS Microbiol. Rev. 36(3), 663–683 (2012)

    Article  Google Scholar 

  11. Zhao, J., Zhao, J., Perlman, S.: Differential effects of IL-12 on Tregs and non-Treg T cells: roles of IFN-γ, IL-2 and IL-2R. PLoS ONE 7(9), e46241 (2012)

    Article  Google Scholar 

  12. Moore, K.W., et al.: Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19(1), 683–765 (2001)

    Article  MathSciNet  Google Scholar 

  13. Sene, D., et al.: Hepatitis C virus (HCV) evades NKG2D-dependent NK cell responses through NS5A-mediated imbalance of inflammatory cytokines. PLoS Pathog. 6(11), e1001184 (2010)

    Article  Google Scholar 

  14. Aste-Amezaga, M., et al.: Molecular mechanisms of the induction of IL-12 and its inhibition by IL-10. J. Immunol. 160(12), 5936–5944 (1998)

    Google Scholar 

  15. Blackburn, S.D., Wherry, E.J.: IL-10, T cell exhaustion and viral persistence. Trends Microbiol. 15(4), 143–146 (2007)

    Article  Google Scholar 

  16. Fiorentino, D.F., et al.: IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 147(11), 3815–3822 (1991)

    Google Scholar 

  17. Hu, X., et al.: IFN-γ suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity 24(5), 563–574 (2006)

    Article  MathSciNet  Google Scholar 

  18. Barth, H., et al.: Analysis of the effect of IL-12 therapy on immunoregulatory T-cell subsets in patients with chronic hepatitis C infection. Hepatogastroenterology 50(49), 201–206 (2003)

    Google Scholar 

  19. Richard, A., et al.: Boolean models of biosurfactants production in Pseudomonas fluorescens. PLoS ONE 7(1), e24651 (2012)

    Article  Google Scholar 

  20. Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: A reduction of logical regulatory graphs preserving essential dynamical properties. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 266–280. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03845-7_18

    Chapter  Google Scholar 

  21. Saadatpour, A., Albert, R., Reluga, T.C.: A reduction method for Boolean network models proven to conserve attractors. SIAM J. Appl. Dyn. Syst. 12(4), 1997–2011 (2013)

    Article  MathSciNet  Google Scholar 

  22. Khalis, Z., et al.: The SMBioNet method for discovering models of gene regulatory networks. Genes Genomes Genomics 3(1), 15–22 (2009)

    Google Scholar 

  23. Saeed, M.T., et al.: Formal modeling and analysis of the hexosamine biosynthetic pathway: role of O-linked N-acetylglucosamine transferase in oncogenesis and cancer progression. PeerJ 4, e2348 (2016)

    Article  Google Scholar 

  24. Ahmad, J., et al.: Hybrid modelling and dynamical analysis of gene regulatory networks with delays. ComPlexUs 3(4), 231–251 (2006)

    Article  Google Scholar 

  25. Gonzalez, A.G., et al.: GINsim: a software suite for the qualitative modelling, simulation and analysis of regulatory networks. Biosystems 84(2), 91–100 (2006)

    Article  Google Scholar 

  26. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – a unifying petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 398–407. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31131-4_22

    Chapter  Google Scholar 

  27. Obaid, A., et al.: Modeling and analysis of innate immune responses induced by the host cells against hepatitis C virus infection. Integr. Biol. 7(5), 544–559 (2015)

    Article  Google Scholar 

  28. Tseng, C.-T.K., Klimpel, G.R.: Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J. Exp. Med. 195(1), 43–50 (2002)

    Article  Google Scholar 

  29. Frese, M., et al.: Interferon-γ inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology 35(3), 694–703 (2002)

    Article  Google Scholar 

  30. Belkaid, Y., Rouse, B.T.: Natural regulatory T cells in infectious disease. Nat. Immunol. 6(4), 353–360 (2005)

    Article  Google Scholar 

  31. Sturm, N., et al.: Characterization and role of intra-hepatic regulatory T cells in chronic hepatitis C pathogenesis. J. Hepatol. 53(1), 25–35 (2010)

    Article  Google Scholar 

  32. Brady, M.T., et al.: Hepatitis C virus non-structural protein 4 suppresses Th1 responses by stimulating IL-10 production from monocytes. Eur. J. Immunol. 33(12), 3448–3457 (2003)

    Article  Google Scholar 

  33. Wang, K.S., Frank, D.A., Ritz, J.: Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4. Blood 95(10), 3183–3190 (2000)

    Google Scholar 

  34. Eckels, D.D., et al.: Immunobiology of hepatitis C virus (HCV) infection: the role of CD4 T cells in HCV infection. Immunol. Rev. 174(1), 90–97 (2000)

    Article  Google Scholar 

  35. Pockros, P.J., et al.: A multicenter study of recombinant human interleukin 12 for the treatment of chronic hepatitis C virus infection in patients nonresponsive to previous therapy. Hepatology 37(6), 1368–1374 (2003)

    Article  Google Scholar 

  36. Shannon, P., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

    Article  Google Scholar 

  37. Cook, K.D., Waggoner, S.N., Whitmire, J.K.: NK cells and their ability to modulate T cells during virus infections. Crit. Rev. Immunol. 34(5), 359–388 (2014)

    Article  Google Scholar 

  38. Lanford, R.E., et al.: Antiviral effect and virus-host interactions in response to alpha interferon, gamma interferon, poly (i)-poly (c), tumor necrosis factor alpha, and ribavirin in hepatitis C virus subgenomic replicons. J. Virol. 77(2), 1092–1104 (2003)

    Article  Google Scholar 

  39. Ruths, D., et al.: The signaling petri net-based simulator: a non-parametric strategy for characterizing the dynamics of cell-specific signaling networks. PLoS Comput. Biol. 4, 0005 (2008)

    Article  MathSciNet  Google Scholar 

  40. Polak, M.E., et al.: Petri net computational modelling of langerhans cell interferon regulatory factor network predicts their role in T cell activation. Sci. Rep. 7(1), 668 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This research is supported by Higher Education Commission (HEC) of Pakistan, NRPU grant no. 4362.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Obaid, A. et al. (2018). Formal Modeling of the Key Determinants of Hepatitis C Virus (HCV) Induced Adaptive Immune Response Network: An Integrative Approach to Map the Cellular and Cytokine-Mediated Host Immune Regulations. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10963. Springer, Cham. https://doi.org/10.1007/978-3-319-95171-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95171-3_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95170-6

  • Online ISBN: 978-3-319-95171-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics