Skip to main content

Multi-image 3D Reconstruction: A Photogrammetric and Structure from Motion Comparative Analysis

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2018 (ICCSA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10964))

Included in the following conference series:

Abstract

Virtual Web Reconstruction of cultural heritage is one of the most interesting and innovative tool to preserve historical, architectural and artistic memory of many sites, particularly the ones prone to disappear, as well as to promote territories and tourism development. Recently, high-resolution 3D models are realized through improved technology and integration of survey techniques such as laser scanning and photogrammetry. However, the large and complex volume of 3D data makes difficult to access and handle them for either experts and citizens. In particular, the rendering of large 3D models may influence the performance of web publication and browsing. Considering this background, the goal of this paper is the comparison between the level of accuracy and realism of 3D models optimized using two different mesh simplification.

The metric used is based on the Hausdorff distance which is a generic technique to define a distance between two nonempty sets, considering 3D scanner mesh as a reference in the measure. The “Casale di Pacciano” near Bisceglie (Apulia region, Italy), has been investigated as study case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Webb, C.: Guidelines for the preservation of digital heritage (2003)

    Google Scholar 

  2. Boehler, W., Heinz, G., Marbs, A.: The potential of non-contact close range laser scanners for cultural heritage recording. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 34(5/C7), 430–436 (2002)

    Google Scholar 

  3. Boehler, W., Heinz, G., Marbs, A.: The potential of non-contact close range laser scanners for cultural heritage recording. In: Proceedings of the CIPA–International Symposium, Potsdam, Germany (2001)

    Google Scholar 

  4. D’Agnano, F., Balletti, C., Guerra, F., Vernier, P.: Tooteko: a case study of augmented reality for an accessible cultural heritage. Digitization, 3D printing and sensors for an audio-tactile experience. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40(5), 207 (2015)

    Article  Google Scholar 

  5. Guttentag, D.A.: Virtual reality: applications and implications for tourism. Tour. Manag. 31(5), 637–651 (2010)

    Article  Google Scholar 

  6. Fritz, F., Susperregui, A., Linaza, M.T.: Enhancing cultural tourism experiences with augmented reality technologies. In: 6th International Symposium on Virtual Reality, Archaeology and Cultural Heritage, VAST (2005)

    Google Scholar 

  7. Balletti, C., Guerra, F., Scocca, V., Gottardi, C.: 3D integrated methodologies for the documentation and the virtual reconstruction of an archaeological site. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40(5), 215 (2015)

    Article  Google Scholar 

  8. Aita, D., Barsotti, R., Bennati, S., Caroti, G., Piemonte, A.: 3-DIMENSIONAL geometric survey and structural modelling of the dome of Pisa cathedral. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 39–46 (2017)

    Article  Google Scholar 

  9. Caradonna, G., Lionetti, S., Tarantino, E., Verdoscia, C.: A comparison of low-poly algorithms for sharing 3D models on the web. In: Cefalo, R., Zieliński, J.B., Barbarella, M. (eds.) New Advanced GNSS and 3D Spatial Techniques. LNGC, pp. 237–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-56218-6_19

    Chapter  Google Scholar 

  10. Noh, Z., Sunar, M.S., Pan, Z.: A review on augmented reality for virtual heritage system. In: Chang, M., Kuo, R., Kinshuk, Chen, G.D., Hirose, M. (eds.) Edutainment 2009. LNCS, vol. 5670, pp. 50–61. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03364-3_7

    Chapter  Google Scholar 

  11. Liu, T., Zhao, D., Pan, M.: An approach to 3D model fusion in GIS systems and its application in a future ECDIS. Comput. Geosci. 89, 12–20 (2016)

    Article  Google Scholar 

  12. Pecchioli, L., Pucci, M., Mohamed, F., Mazzei, B.: Browsing in the virtual museum of the sarcophagi in the Basilica of St. Silvestro at the Catacombs of Priscilla in Rome. In: 2012 18th International Conference on Virtual Systems and Multimedia, VSMM. IEEE (2012)

    Google Scholar 

  13. Kersten, T.P.: 3D scanning and modelling of the bismarck monument by terrestrial laser scanning for integration into a 3D city model of hamburg. In: Ioannides, M., Fellner, D., Georgopoulos, A., Hadjimitsis, D.G. (eds.) EuroMed 2010. LNCS, vol. 6436, pp. 179–192. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16873-4_14

    Chapter  Google Scholar 

  14. Altuntas, C., Yildiz, F., Scaioni, M.: Laser scanning and data integration for three-dimensional digital recording of complex historical structures: the case of mevlana museum. ISPRS Int. J. Geo-Inf. 5(2), 18 (2016)

    Article  Google Scholar 

  15. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: MESH: measuring errors between surfaces using the hausdorff distance. In: Proceedings of the 2002 IEEE International Conference on Multimedia and Expo, ICME 2002. IEEE (2002)

    Google Scholar 

  16. Remondino, F., El-Hakim, S.: Image-based 3D modelling: a review. Photogramm. Rec. 21(115), 269–291 (2006)

    Article  Google Scholar 

  17. Blais, F.: Review of 20 years of range sensor development. J. Electron. Imag. 13(1), 231–244 (2004)

    Article  Google Scholar 

  18. El-Hakim, S.F., Beraldin, J.A., Picard, M., Godin, G.: Detailed 3D reconstruction of large-scale heritage sites with integrated techniques. IEEE Comput. Graph. Appl. 24(3), 21–29 (2004)

    Article  Google Scholar 

  19. Barazzetti, L., Forlani, G., Remondino, F., Roncella, R., Scaioni, M.: Experiences and achievements in automated image sequence orientation for close-range photogrammetric projects. In: 2011 Proceedings of International Society for Optics and Photonics, Videometrics, Range Imaging, and Applications XI, vol. 8085, p. 13, paper no. 80850F (2011)

    Google Scholar 

  20. Luhmann, T., Fraser, C., Maas, H.G.: Sensor modelling and camera calibration for close-range photogrammetry. ISPRS J. Photogramm. Remote Sens. 115, 37–46 (2016)

    Article  Google Scholar 

  21. Remondino, F., Spera, M.G., Nocerino, E., Menna, F., Nex, F.: State of the art in high density image matching. Photogramm. Rec. 29(146), 144–166 (2014)

    Article  Google Scholar 

  22. Fugazza, D., Scaioni, M., Corti, M., D’Agata, C., Azzoni, R.S., Cernuschi, M., Diolaiuti, G.A.: Combination of UAV and terrestrial photogrammetry to assess rapid glacier evolution and map glacier hazards. Nat. Hazards Earth Syst. Sci. 18(4), 1055 (2018)

    Article  Google Scholar 

  23. Granshaw, S.I.: Structure from motion: origins and originality. Photogramm. Rec. 33(161), 6–10 (2018)

    Article  Google Scholar 

  24. Weiss, M., Baret, F.: Using 3D point clouds derived from UAV RGB imagery to describe vineyard 3D macro-structure. Remote Sens. 9(2), 111 (2017)

    Article  Google Scholar 

  25. Moulon, P., Bezzi, A.: Python photogrammetry toolbox: a free solution for three-dimensional documentation. In: ArcheoFoss (2011)

    Google Scholar 

  26. Cogliati, M., Tonelli, E., Battaglia, D., Scaioni, M.: Extraction of DEMS and Orthoimages from archive aerial imagery to support project planning in civil engineering. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci 4 (2017)

    Google Scholar 

  27. Gini, R., Pagliari, D., Passoni, D., Pinto, L., Sona, G., Dosso, P.: UAV photogrammetry: block triangulation comparisons. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 1, W2 (2013)

    Google Scholar 

  28. Jaud, M., Passot, S., Le Bivic, R., Delacourt, C., Grandjean, P., Le Dantec, N.: Assessing the accuracy of high resolution digital surface models computed by PhotoScan® and MicMac® in sub-optimal survey conditions. Remote Sens. 8(6), 465 (2016)

    Article  Google Scholar 

  29. Bezzi, A., Bezzi, L., Gietl, R., Pisu, N.: ArcheOS and UAVP, a free and open source platform for remote sensing: the case study of Monte S. Martino ai Campi of Riva del Garda (Italy). In: Archaeology in the Digital Era, pp. 792–799 (2013)

    Google Scholar 

  30. Zorin, D., Schröder, P., Sweldens, W.: Interpolating subdivision for meshes with arbitrary topology. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. ACM (1996)

    Google Scholar 

  31. Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Comput.-Aided Des. 10(6), 350–355 (1978)

    Article  Google Scholar 

  32. Labsik, U., Greiner, G.: Interpolatory √3‐subdivision. In: Computer Graphics Forum. Wiley Online Library (2000)

    Article  Google Scholar 

  33. Zhang, J., Wang, B., Li, X.: Geometric calibration of projector imagery on curved screen based-on subdivision mesh. In: Chen, F., Jüttler, B. (eds.) GMP 2008. LNCS, vol. 4975, pp. 592–600. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79246-8_52

    Chapter  Google Scholar 

  34. Dyn, N., Levine, D., Gregory, J.A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. (TOG) 9(2), 160–169 (1990)

    Article  Google Scholar 

  35. Klein, R., Liebich, G., Straßer, W.: Mesh reduction with error control. In: Proceedings of the 7th conference on Visualization 1996. IEEE Computer Society Press (1996)

    Google Scholar 

  36. Kobbelt, L.: √3-subdivision. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to VisualDrone (an Apulian start-up operating in the world of UAS), to Dr. Antonio Novelli for their precious collaboration in the survey campaign and to Dr. Giuseppe Troilo, president of the Physis Trekking Astrophile Association, for his availability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eufemia Tarantino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caradonna, G., Tarantino, E., Scaioni, M., Figorito, B. (2018). Multi-image 3D Reconstruction: A Photogrammetric and Structure from Motion Comparative Analysis. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2018. ICCSA 2018. Lecture Notes in Computer Science(), vol 10964. Springer, Cham. https://doi.org/10.1007/978-3-319-95174-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95174-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95173-7

  • Online ISBN: 978-3-319-95174-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics