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Abstract. Identification of non-functional requirements in an early phase
of software development process is crucial for creating a proper software
design. These requirements are often neglected or given in too general
forms. However, interviews and other sources of requirements often in-
clude important references also to non-functional requirements which are
embedded in a bigger textual context. The non-functional requirements
have to be extracted from these contexts and should be presented in a
formulated and standardized way to support software design. The set of
requirements extracted from their textual context have to be classified
to formalize them. This task is to be accomplished manually but it can
be very demanding and error-prone. Several attempts have been made to
support identification and classification tasks using supervised and semi-
supervised learning processes. These efforts have achieved remarkable
results. Researchers were mainly focused on the performance of classifi-
cation measured by precision and recall. However, creating a tool which
can support business analysts with their requirements elicitation tasks,
execution time is also an important factor which has to be taken into
account. Knowing the performance and the results of benchmarks can
help business analysts to choose a proper method for their classification
tasks. Our study presented in this article focuses on both the comparison
of performances of the classification processes and their execution time
to support the choice among the methods.

Keywords: non-functional requirements, requirements elicitation, classification,
natural language processing

1 Introduction

Non-functional requirements (NFRs) are crucial factors for software design [1].
The lack of a well structured set of non-functional requirements can lead to an
inappropriate software design and the failure of the specific project. Security
aspects are also a critical part of the software design process which is one of
the emphasized concern of the software development these days. These aspects



cannot be reviewed completely without security related non-functional require-
ments. In practice, many NFRs are out of the analysis and even those which
are included in specifications are poorly engineered. Incomplete or ambiguous
specifications can lead the system into unspecified state [2].

Requirements are originated from memos of interviews and other textual
sources like regulations, laws or reports. Regulations and laws are well-structured
documents but their structure reflects only the business viewpoints. Memos cre-
ated during interviews, on the other hand, are very often unstructured or semi-
structured. Requirements are embedded into these textual contexts and their
extraction and classification are ones of the most important duty of business
analysts. Identifying and classifying non-functional requirements from this col-
lection of different documents can be demanding and error-prone. Several inves-
tigations have been accomplished with remarkable results to support the identifi-
cation and classification process using natural language processing and machine
learning methods [3, 4]. Some researchers investigated the use of ontologies which
have been created on standards’ basis [5, 6]. Some researchers like Lu Megmen
et al. [7] or Abad et al. [8] utilized supervised learning methods, others utilized
semi-supervised learning techniques such as Expectation Maximization strategy
[9]. Abad et al. applied also clustering techniques to identify the best method
for processing requirements sentences. These studies have shown that machine
learning processes can be utilized successfully also for requirements engineering
if their inputs are prepared for this purpose appropriately. A common represen-
tation of the texts containing requirements is the tf-idf model which formulates
a sparse matrix containing the measure of the importance of the given word in
a given text.

Semi-supervised methods can give better results if there are not enough la-
beled examples for learning as shown by Casamayor et al. [9].This is a common
issue in requirements engineering that labeled examples can be obtainable with
difficulty especially in case of some specific domain. Ontology-based methods
can cope with also this issue.

We have compared the performance of classification methods of sklearn li-
brary [10] with each other and also with the results of former studies like [9, 7]
as we will present it in this article later. Because of our experiments are based
on sklearn the results of these experiments can show the difference of the per-
formance of different implementation comparing them with the results of former
researches. This difference suggests that experiments can be only reproduced if
also the implementation of algorithms and methods are the same. Next to the
comparison mentioned above, we have measured also the execution time which
provides another important factor for business analysts to choose an appropriate
classification method for their specific classification tasks.

The main contribution of our work is a broad comparison of processes im-
plemented in sklearn regarding their performance and the execution time. This
information together can support a better choice among the tools for requirement
classification process. The outcomes of our experiments have also confirmed the
results of former researches [9, 7, 8].



The paper is organized as follows. The next section introduces our approach
and analysis model. In Section 3 we introduce the dataset of non-functional
requirements and outline the addressed problem. Section 4 provides results of
our analysis produced by various classifiers and compares closely related work.
The related literature briefly presented in Section 5 and we conclude the paper
in Section 6.

2 Background

The source of requirements are memos of different interviews and regulations,
laws and standards. These documents contain texts written in natural languages.
In order to these texts be capable of classification they have to be preprocessed.
During the preprocessing, texts are transformed into another representation.
The most common representation is the tf-idf model which is a measure of the
importance of a given word in a given text. The measure of tf-idf is formulated
as:

tfidf(t, d,D) = tf(t, d) ∗ idf(t,D)

where t denotes terms (words in our case), d denotes the document (sentence
in our case) and D denotes the collection of documents (the set of sentences in
our case). The tf(t,d) is the term frequency in a given document. The idf (inverse
document frequency) is formulated as:

idf(t,D) = log
|D|

1 + | {d ∈ D : t ∈ d} |
Statistical methods often use the bag of words model in which a text or a

sentence is represented as the multiset of its words disregarding grammar or
modality of the given sentence. In order to these model can be applied sentences
have to be preprocessed appropriately. Punctuation characters, stop words are to
be removed and words of the sentences are to be stemmed. The most commonly
used method for this purpose is the Porter Stemmer. However, using these models
some important information will vanish as mentioned above.

Classification of textual information can be performed using classifiers de-
signed for multiclasses and binary classifiers can also be used following the one-
versus-all strategy. In this case, classes are classified iteratively, only one class is
selected in each step which gets label one, others get label zero. The cumulative
result is that class, which produces the highest probability for the given example.

For evaluation, we have used precision and recall. The precision is formulated
as:

Precision =
tp

tp + fp

where tp is the true positive which is the number of correct positive classifi-
cation, fp denotes the false positive which is the case when classifier accepts the
example but it has to be rejected. This is called Type I error.



Recall can be formulated as:

Recall =
tn

tn + fn

where tn denotes true negative which is a correct negative classification and
fn denotes the false negative which is the case when classifier rejects the example
but it has to be accepted. This is called Type II error.

We have used the average of these values to compare the classifiers each
other.

3 Experiments

We used TERA Promise NFR dataset for our experiments [11]. This dataset
was created by students of DePaul University and it was updated in 2010. This
dataset contains requirements sentences of 15 projects which were classified by
the students. The statistics about the classification and the related projects is
shown in Table 1 and Figure 1.

Requirement type Project No Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Functional (F) 20 11 47 25 36 27 15 20 16 38 0 0 0 0 0 255
Availability (A) 1 2 2 0 2 1 0 5 1 1 2 1 1 1 1 21
Fault tolerance (FT) 0 4 0 0 0 2 0 2 0 0 0 2 0 0 0 10
Legal (L) 0 0 0 6 3 0 1 3 0 0 0 0 0 0 0 13
Look and feel (LF) 1 4 0 2 3 2 0 6 0 7 2 2 4 3 2 38
Maintainability (MN) 0 0 0 0 0 4 0 2 1 0 1 3 2 2 2 17
Operational (O) 0 0 7 6 10 15 3 9 2 0 0 2 2 3 3 62
Performance (PE) 2 6 2 2 4 1 2 17 4 4 3 5 0 1 1 54
Portability (PO) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Scalability (SC) 0 3 4 0 3 4 0 4 0 0 0 1 2 0 0 21
Security (SE) 1 3 10 10 7 5 2 15 0 1 3 3 2 2 2 66
Usability (US) 3 6 8 4 5 13 0 10 0 2 2 3 6 4 1 67

Total NFRs 8 29 33 30 37 47 8 73 8 15 13 22 19 16 12 370
Functional 20 11 47 25 36 27 15 20 16 38 0 0 0 0 0 255
Total Requirements 28 40 80 55 73 74 23 93 24 53 13 22 19 16 12 625

Table 1. Requirement labels in the 15 projects of the Promise NFR dataset

Regarding class of Portability, the dataset contains only one example so we
had removed that example before our experiments were executed.

In order to perform classification dataset had been preprocessed: punctuation
characters and stop words were removed and the remaining words were stemmed
using Porter Stemmer process. The preprocessed dataset was then transformed
to tf-idf representation.



Fig. 1. Requirements classification process

We accomplished classification processes using algorithms implemented in
sklearn [10] and compared the results each other and the results obtained by
Cassamayor et al in their experiments [9]. The goal of our experiments was
determining the best algorithm of classification implemented in sklearn for re-
quirements classification tasks considering precision, recall and F-score, com-
plemented by execution time. For our experiments, we selected those classifiers
which had implemented one-vs-all strategy and/or were inherently capable of
handling multiclasses. We selected Multinomial-, Gaussian- and Bernoulli Naive
Bayes classifiers and also Support Vector Machine with linear kernel, Linear
Logistic Regression, Label Propagation, Label Spreading, Decision Tree, Extra
Tree, Extra Trees as an ensemble method, K-Nearest Neighbour and Multi Layer
Perceptron methods were selected. The selection process was also influenced by
classifiers’ resource requirements.

The experiments were executed using repeated K-Fold cross-validation method.
Both the number of groups and the repetition number were set to 10. Precision,
recall and F-measure were calculated both for each test and each class by the
corresponding sklearn function and the results were averaged for each classifier.
Averaged variance was calculated as well and also the F-score value was com-
puted for every classifier using the averaged precision and recall because the
averaged F-score measure does not hold any useful information.

4 Results

In Table 2 the measured average Precision, Recall, F-score is represented such as
their averaged variance. As mentioned in the previous chapter average F-score
does not hold valuable information so F-score was computed using the following
formula:



F −measure = 2 ∗ Precision ∗Recal

Precision + Recall

The average of precision, recall and F-measure values are illustrated in Fig-
ure 3. The calculated F-measures are plotted in Figure 2. For comparison pur-
pose, the results are illustrated using line diagrams. The averaged results and
variance can be studied using Figure 4.

Classifier Average Comp Variance
P R F F P R F

BernoulliNB 0.43 0.22 0.25 0.29 0.18 0.09 0.06
DT 0.66 0.64 0.62 0.65 0.01 0.03 0.01
ET 0.63 0.62 0.59 0.62 0.01 0.04 0.02
ETs 0.63 0.63 0.59 0.63 0.01 0.04 0.02
GNB 0.72 0.69 0.67 0.70 0.02 0.02 0.02
KNeighbours 0.71 0.52 0.55 0.60 0.08 0.07 0.05
LabelPropagation 0.70 0.68 0.65 0.69 0.02 0.03 0.02
LabelSpread 0.70 0.67 0.65 0.68 0.02 0.03 0.02
Logistic 0.87 0.67 0.72 0.76 0.01 0.05 0.03
MLP 0.38 0.66 0.36 0.48 0.01 0.03 0.01
MultinomialNB 0.84 0.68 0.72 0.75 0.02 0.03 0.02
SVM 0.89 0.65 0.71 0.75 0.01 0.05 0.02

Table 2. Precision, recall and F-measure of classifiers

As the results of our experiments present, regarding precision the Multi-
nomial Naive Bayes Classifier, Support Vector Machine with linear kernel and
Linear Logistic Regression has produced the best values. Naive Bayes Classi-
fier was found also in former researches as the best classifier for classification
of requirement sentences comparing it other classifiers such as tf-idf classifier[9],
k-Nearest Neighbour[9, 8], Bittern Topic Model (BTM) or Latent Dirichlet Allo-
cation (LDA)[8]. Lu Meng et al. have found SVM classifier has performed best
in their research [7].

Analysing the results can be seen that the average precision of other methods
is lower and the worst result was produced by Multilayer Perceptron model. This
outcome could be misleading because both the early stopping was enabled for
that process and the number of layers was reduced for performance purpose.
Therefore the usability of that model for requirements classification needs to
be checked thoroughly. Another classifier which produced weak precision results
is the Bernoulli Naive Bayes. This classifier binarizes the feature vector before
performs the classification process because its algorithm works on feature vector
containing boolean values. Using tf-idf representation this approach has been
proved wrong for classification requirement sentences.
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Fig. 2. Computed F-measures of the classifiers

Recall is well balanced among the classifiers as shown in Figure 3.The two
exceptions are Bernoulli Naive Bayes and MLP classifiers which have produced
also weak precision values.

The average variance of precision is low (under 5 %) in case of the most
classifiers except the two mentioned cases. The variance in case of K-Nearest
Neighbours is a bit higher (7 %) but its performance is also lower than others’.

The size of the training dataset is small, only 625 examples are presented
in NFR database. These data are labeled using 12 classes. We have removed
the only portability example but the remaining dataset has contained also small
classes as shown in Table 1. Therefore the results presented in this paper are to
be validated using a bigger labeled dataset.
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Fig. 3. Average precision, recall and F-measure
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Fig. 4. Classification precision, recall and f-measures (left hand side) and variance
statistics (right hand side)

As mentioned above the best classifiers identified by our experiences are
similar to those that other research has already demonstrated. To choose the
best classifier in practice the execution time is to be considered as well. Table 4
and Figure 5 represents the execution time of classifiers used in our experiments.
These values represent the whole execution time of the measurement using the
same environment.

According to our experiments, the process based on Multinomial Naive Bayes
has produced the best execution time. Based on the precision, recall and the ex-
ecution time the Multinomial Naive Bayes classifier is the best choice in practice
for classification of requirement sentences. As mentioned above this classifier was
identified as the best based on its performance by some former research [8, 9]
comparing with some other methods. Our research has complemented the com-
parison with other popular classifiers implemented by sklearn library. However,
classifiers like Logistic Regression or Support Vector Machine has performed a
little bit better regarding to their precision and recall but considering the execu-
tion time, Multinomial Naive Bayes classifier can be denoted as the best choice
for practice.

5 Related work

The problem of processing requirements documents using natural language pro-
cessing and machine learning methods has been a research topic for decades [3].
Although non-functional requirements are less dependent on the application do-
main, it is not a trivial problem to set up a general list of NFR types. The
types identified in the literature are widespread, for example Lawrence Chung
et al. [12] identified 156 NFR categories, while Mairiza et al. [13] separated 114



Classifier Execution time (s)

BernoulliNB 40.12
DT 455.16
ET 30.80
ETs 284.51
GNB 52.37
KNeighbours 274.66
LabelPropagation 120.67
LabelSpread 150.41
Logistic 353.51
MLP 455.82
MultinomialNB 21.61
SVM 343.68

Table 3. Execution time of classifiers Fig. 5. Execution time of classifiers

different NFR classes in their work, on the contrary to the 6 high-level categories
defined by the ISO standard.

A fundamental study of NFR classification is published relatively lately in
2006 by Cleland et al. [14]. They used 14 NFR categories separated from func-
tional requirements. More than 600 requirements from 15 projects were collected
and manually categorized to train and test their categorization methods. Al-
though this is still a valuable dataset today, the requirements were originated
from university student projects, not from requirements documents of a produc-
tion system. Cleland et al. achieved high recall with the tradeoff of really low
precision. This experiment was reproduced by several researchers in the past
[15, 16]. Casamayor et al. [16] employed multinomial naive Bayes classifier cou-
pled with an Expectation Maximization algorithm. Although they improved the
precision, the replication of the original study was partial only.

Requirements traceability is a related field, where NLP and information re-
trieval techniques are frequently applied [17–19]. Hindle et al. [20] used topic
modeling to link NFRs to topics found in commit messages. Falessi et al. [21]
conducted a large-scale experiment with various NLP techniques including dif-
ferent algebraic models, term weightings and similarity metrics in order to detect
identical non-functional requirements.

Sharma et al. [22] addressed the NFR extraction problem with a rule based
approach. They implemented a framework for NFR analysis including a DSL
language. Sawyer et al. have focused on document archaeology and created an
NLP based tool called REVERE to support business analysts in the investigation
of different documents containing requirements [23]. This tool has utilized some
standard NLP techniques like part-of-speech tagging or semantic tagging and
determination of modality.

Denger et al. examined the ambiguity of requirements sentences and investi-
gated the use of language patterns for rewriting these requirements into less am-
biguous sentences [24]. The ambiguity of requirements is one of the most promi-



nent issues in requirements engineering which has to be resolved as pointed by
Firesmith in his paper [2]. From the perspective of mining software repositories,
Paixao et al. [25] investigated the relationship between build results obtained
from continuous integration tools with non-functional requirements.

6 Conclusions

Software design and implementation need collected and classified requirements.
One of the most important tasks of business analysts is to collect and classify
these requirements during elicitation process. The classification process can be a
demanding and error-prone task in case of a vast amount of sources. Experiments
were conducted to identify appropriate machine learning methods can be used
for requirement classification task to support business analysts in their elicitation
process. We have compared methods implemented in sklearn library regarding
their precision and recall value and also completed this comparison with execu-
tion time. As the results of our experiments show the best choice for practice
is the Multinomial Naive Bayes classifier. This method has produced very good
precision and recall values and the execution time is far the best compared with
other processes. This outcome also supports the results of the former researches.
We have used the PROMISE dataset which is a small database containing labeled
examples. Because of the classification processes depend on strongly the number
of learning examples validation have to be performed using a bigger database.
Since labeled examples cannot be obtained freely semi-supervised learning meth-
ods and also ontology-based methods can be considered. Using topics of Internet
forums sentences can be extracted and classified by their topics. This method
can produce examples which can be utilized for the learning process of classifiers.

The goal of our future work is to augment the learning examples using sen-
tences extracted from professional topics of the Internet and to find other meth-
ods for improving the performance of classifiers.
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