Skip to main content

Prototype Design of a Metamodel for Pedestrian System Planning Based on System Dynamics

  • Conference paper
  • First Online:
Knowledge Management in Organizations (KMO 2018)

Abstract

The ongoing economic and social transformations in urban spaces have raised the attention of policymakers and planners in favor of non-motorized transport, such as pedestrians. In Latin America, the traditional planning takes into account those most influential aspects of transport systems, usually measured in terms of economic impact and, through the years, directed efforts to improve motorized transport systems and its infrastructure in most urban centers. In general, urban transport planning has aimed at building infrastructure and specific pedestrian features and its internal dynamics are not considered. Therefore, this study aims at presenting a model of collective intelligence based on system dynamics that allows represent the features relationships within the pedestrian system of Bogotá, at different levels of decision, integrating databases, aiming at a systemic analysis for decision-making. The methodology used for the research was descriptive and case study, based on bibliographic, documental and fieldwork investigation. The main result of the study is the design of a prototype meta-model proposing a methodology for planning pedestrian system, based on the development of collective intelligence, recognizing human interaction, that can be adopted by transport planners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonini, G., Bierlaire, M., Weber, M.: Discrete choice models of pedestrian walking behavior. Transp. Res. Part B Methodol. 40(8), 667–687 (2006)

    Article  Google Scholar 

  2. Löhner, R.: On the modeling of pedestrian motion. Appl. Math. Model. 34(2), 366–382 (2010)

    Article  MathSciNet  Google Scholar 

  3. Zhang, Q., Han, B.: Simulation model of pedestrian interactive behavior. Phys. A Stat. Mech. Appl. 390(4), 636–646 (2011)

    Article  Google Scholar 

  4. Jian, L., Lizhong, Y., Daoliang, Z.: Simulation of bi-direction pedestrian movement in corridor. Phys. A Stat. Mech. Appl. 354, 619–628 (2005)

    Article  Google Scholar 

  5. Suma, Y., Yanagisawa, D., Nishinari, K.: Anticipation effect in pedestrian dynamics: modeling and experiments. Phys. A Stat. Mech. Appl. 391(1–2), 248–263 (2012)

    Article  Google Scholar 

  6. Ezaki, T., Yanagisawa, D., Ohtsuka, K., Nishinari, K.: Simulation of space acquisition process of pedestrians using Proxemic Floor Field Model. Phys. A Stat. Mech. Appl. 391(1–2), 291–299 (2012)

    Article  Google Scholar 

  7. Gotoh, H., Harada, E., Andoh, E.: Simulation of pedestrian contra-flow by multi-agent DEM model with self-evasive action model. Saf. Sci. 50(2), 326–332 (2012)

    Article  Google Scholar 

  8. Tian, L., Huang, H., Liu, T.: Day-to-day route choice decision simulation based on dynamic feedback information. J. Transp. Syst. Eng. Inf. Technol. 10(4), 79–85 (2010)

    Google Scholar 

  9. Seyfried, A., Steffen, B., Lippert, T.: Basics of modelling the pedestrian flow. Phys. A Stat. Mech. Appl. 368(1), 232–238 (2006)

    Article  Google Scholar 

  10. Yang, J., Deng, W., Wang, J., Li, Q., Wang, Z.: Modeling pedestrians’ road crossing behavior in traffic system micro-simulation in China. Transp. Res. Part A Policy Pract. 40(3), 280–290 (2006)

    Article  Google Scholar 

  11. Lévy, P.: Inteligencia Colectiva: Por una antropología del ciberespacio, Washington (2004)

    Google Scholar 

  12. Arcade, J., Godet, M., Meunier, F., Roubelat, F.: Análisis estructural con el método MICMAC y estrategia de los actores con el método MACTOR. In: Futures Research Methodology, Version 1.0. Millennium Project del American Council for the United Nations University, Washington (1999)

    Google Scholar 

  13. Méndez, G., Álvarez, L.: Diseño de prototipo diagnóstico para la pequeña y mediana empresa, PyME, Bogotá (2004)

    Google Scholar 

  14. I. de medicina legal y ciencias Forenses, “Forensis,” Bogotá (2012)

    Google Scholar 

  15. Avineri, E., Shinar, D., Susilo, Y.O.: Pedestrians’ behaviour in cross walks: the effects of fear of falling and age. Accid. Anal. Prev. 44(1), 30–34 (2012)

    Article  Google Scholar 

  16. Bergman, A., Olstam, J., Allström, A.: Analytical traffic models for roundabouts with pedestrian crossings. Procedia - Soc. Behav. Sci. 16, 697–708 (2011)

    Article  Google Scholar 

  17. Baykal-Gürsoy, M., Xiao, W., Ozbay, K.: Modeling traffic flow interrupted by incidents. Eur. J. Oper. Res. 195(1), 127–138 (2009)

    Article  MathSciNet  Google Scholar 

  18. Yang, W.-D., Wang, T.: The fusion model of intelligent transportation systems based on the urban traffic ontology. Phys. Procedia 25, 917–923 (2012)

    Article  Google Scholar 

  19. Barrero, L.H., Sánchez, A., Forero, A., Quiroga, J., Felknor, S., Quintana, L.A.: Pedestrians’ beliefs about road crossing in Bogotá: questionnaire development. Univ. Psychol. 12(2), 433–444 (2013)

    Article  Google Scholar 

  20. Gandhi, T., Trivedi, M.M.: Pedestrian protection systems: issues, survey, and challenges. IEEE Trans. Intell. Transp. Syst. 8(3), 413–430 (2007)

    Article  Google Scholar 

  21. FPV and Uniandes: Costo económico de la accidentalidad vial en Colombia, p. 108. Fondo de Prevención Vial, Bogotá (2013)

    Google Scholar 

  22. Moyano, E.: Teoría del Comportamiento Planificado e intención de infringir normas de tránsito en peatones. Estud. Psicol. 2(2), 335–348 (1997)

    Article  Google Scholar 

  23. Alhajyaseen, W.K.M., Nakamura, H., Asano, M.: Effects of bi-directional pedestrian flow characteristics upon the capacity of signalized crosswalks. Procedia - Soc. Behav. Sci. 16, 526–535 (2011)

    Article  Google Scholar 

  24. Banos, A., Charpentier, A.: Simulating pedestrian behavior in subway stations with agents. In: Proceedings of the 4th European Social Simulation Association, pp. 611–621 (2007)

    Google Scholar 

  25. Kilambi, P., Ribnick, E., Joshi, A.J., Masoud, O., Papanikolopoulos, N.: Estimating pedestrian counts in groups. Comput. Vis. Image Underst. 110(1), 43–59 (2008)

    Article  Google Scholar 

  26. Qiu, F., Hu, X.: Modeling dynamic groups for agent-based pedestrian crowd simulations. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, pp. 461–464 (2010)

    Google Scholar 

  27. Conradt, L., List, C.: Group decisions in humans and animals: a survey. Philos. Trans. R. Soc. 364(1518), 719–742 (2009)

    Article  Google Scholar 

  28. de Lavalette, B.C., Tijus, C., Poitrenaud, S., Leproux, C., Bergeron, J., Thouez, J.-P.: Pedestrian crossing decision-making: a situational and behavioral approach. Saf. Sci. 47(9), 1248–1253 (2009)

    Article  Google Scholar 

  29. Xu, Q., Mao, B., Liang, X., Feng, J.: Simple cognitive heuristics applied to modeling pedestrian behavior dynamics. Procedia - Soc. Behav. Sci. 43, 571–578 (2012)

    Article  Google Scholar 

  30. Kaparias, I., Bell, M.G.H., Miri, A., Chan, C., Mount, B.: Analysing the perceptions of pedestrians and drivers to shared space. Transp. Res. Part F Traffic Psychol. Behav. 15(3), 297–310 (2012)

    Article  Google Scholar 

  31. Axelrod, R.: The dissemination of culture: a model with local convergence and global polarization. J. Confl. Resolut. 41(2), 203–226 (1997)

    Article  Google Scholar 

  32. Bachels, M., Peet, J., Newman, P.: Using a systems approach to unravel feedback mechanisms affecting urban transport choices. In: 17th International Conference of the System Dynamics Society (1999)

    Google Scholar 

  33. Beimborn, E., Kennedy, R.: Inside the blackbox: making transportation models work for livable communities, Milwaukee (1996)

    Google Scholar 

  34. Auvinen, H., Tuominen, A.: Future transport systems: long-term visions and socio-technical transitions. Eur. Transp. Res. 6, 343–354 (2014)

    Article  Google Scholar 

  35. Keegan, O., O’Mahony, M.: Modifying pedestrian behaviour. Transp. Res. Part A Policy Pract. 37(10), 889–901 (2003)

    Article  Google Scholar 

  36. de Hacienda, S.D.: Presupuesto de Movilidad de Bogotá, p. 153. Alcaldía de Bogotá, Bogotá (2014)

    Google Scholar 

  37. Acevedo, J., Bocarejo, J.P., Echeverry, J.C., Lleras, G.C., Ospina, G., Rodríguez, Á.: El transporte como soporte al desarrollo de Colombia. Una visión al 2040. Universidad de Los Andes, Bogotá (2009)

    Google Scholar 

  38. Balsas, C.J.: Sustainable transportation planning on college campuses. Transp. Policy 10(1), 35–49 (2003)

    Article  Google Scholar 

  39. de la República, B.: Banco de la república. Salario mínimo legal en Colombia. Serie histórica en pesos colombianos (2014). http://obiee.banrep.gov.co/analytics/saw.dll?Go&Path=/shared/Consulta+Series+Estadisticas+desde+Excel/1.+Salarios/1.1+Salario+minimo+legal+en+Colombia/1.1.1+Serie+historica&Options=rdf&NQUser=salarios&NQPassword=salarios&lang=es

  40. Secretaría Distrital de Movilidad: Plan de cobro 2013 Secretaría Distrital de Movilidad, Bogotá (2013)

    Google Scholar 

  41. Ulloa, G.: El tránsito vehículo-peatonal desde un punto de vista psicocultural. Rev. Costarric. Psicol. 30, 12 (2011)

    Google Scholar 

  42. Carsten, O.M.J., Sherborne, D.J., Rothengatter, J.A.: Intelligent traffic signals for pedestrians: evaluation of trials in three countries. Transp. Res. Part C Emerg. Technol. 6, 213–229 (1998)

    Article  Google Scholar 

  43. Wang, D., Gao, S.Q., Kasperski, M., Liu, H.P., Jin, L.: The dynamic characteristics of a couple system by pedestrian bridge and walking persons. Appl. Mech. Mater. 71–78, 1499–1506 (2011)

    Article  Google Scholar 

  44. Barker, M.B.: Toronto’s underground pedestrian system. Tunn. Undergr. Space Technol. 1(2), 145–151 (1986)

    Article  Google Scholar 

  45. Urazán, C., Torres, A., Sánchez, É.: El rol de los pasos peatonales subterráneos como alternativa en los actuales esquemas de planeación urbana. Rev. Tecnura 17(38), 97–108 (2013)

    Article  Google Scholar 

  46. Aschwanden, G.D.P.A., Wullschleger, T., Müller, H., Schmitt, G.: Agent based evaluation of dynamic city models: A combination of human decision processes and an emission model for transportation based on acceleration and instantaneous speed. Autom. Constr. 22, 81–89 (2012)

    Article  Google Scholar 

  47. Kulmala, R.: Ex-ante assessment of the safety effects of intelligent transport systems. Accid. Anal. Prev. 42(4), 1359–1369 (2010)

    Article  Google Scholar 

  48. OECD: Pedestrian Safety, Urban Space and Health. OECD Publishing, Paris, August 2011

    Google Scholar 

  49. Pfau, J., Kirley, M., Kashima, Y.: The co-evolution of cultures, social network communities, and agent locations in an extension of Axelrod’s model of cultural dissemination. Phys. A Stat. Mech. Appl. 392(2), 381–391 (2013)

    Article  Google Scholar 

  50. Franco, I.N.: Segundo Estudio de Comportamiento y Seguridad Vial. Fondo de Prevención Vial, Bogotá (2012)

    Google Scholar 

  51. Hatfield, J., Murphy, S.: The effects of mobile phone use on pedestrian crossing behaviour at signalized and unsignalized intersections. Accid. Anal. Prev. 39(1), 197–205 (2007)

    Article  Google Scholar 

  52. Snowden, D.: Complex acts of knowing: paradox and descriptive self-awareness. Bull. Am. Soc. Inf. Sci. Technol. 29(4), 23–28 (2003)

    Article  Google Scholar 

  53. Tee, M.Y., Lee, S.S.: Advancing understanding using Nonaka’s model of knowledge creation and problem-based learning. Int. J. Comput. Collab. Learn. 8(3), 313–331 (2013)

    Google Scholar 

  54. Forrester, J.: Dinámica Industrial. El Ateneo, Buenos Aires (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay Alvarez-Pomar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alvarez-Pomar, L., Martins-Gonçalves, N., Méndez-Giraldo, G. (2018). Prototype Design of a Metamodel for Pedestrian System Planning Based on System Dynamics. In: Uden, L., Hadzima, B., Ting, IH. (eds) Knowledge Management in Organizations. KMO 2018. Communications in Computer and Information Science, vol 877. Springer, Cham. https://doi.org/10.1007/978-3-319-95204-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95204-8_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95203-1

  • Online ISBN: 978-3-319-95204-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics