Skip to main content

Robust Outdoors Marker-Based Augmented Reality Applications: Mitigating the Effect of Lighting Sensitivity

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10850))

Abstract

Marker-based AR is widely used in outdoors applications enabling the augmentation of physical objects with virtual elements. However, the diversification of lighting conditions may severely affect the accuracy of marker tracking in outdoors environments. In this paper we investigate the effectiveness of geolocative raycasting, a technique which enables the real-time estimation of the user’s field of view in outdoors mobile applications, as a complementary method for enhancing the robustness of marker-based AR applications, thus mitigating the effect of lighting sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A video demonstration of Order Elimination can be found at: https://www.youtube.com/watch?v=iiY5aTasKPg .

  2. 2.

    https://www.vuforia.com/.

  3. 3.

    A video demonstrating geolocative raycasting, used to support outdoors Marker-Based AR applications, can be found at https://youtu.be/pYIIEQEtgTc.

References

  1. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21, 34–47 (2001)

    Article  Google Scholar 

  2. Azuma, R.T.: A survey of augmented reality. Presence: Teleoper. Virtual Environ. 6(4), 355–385 (1997)

    Article  Google Scholar 

  3. Billinghurst, M., Clark, A., Lee, G.: A survey of augmented reality. Found. Trends Hum. Comput. Interact. 8, 73–272 (2014)

    Article  Google Scholar 

  4. Feiner, S., MacIntyre, B., Höllerer, T., Webster, A.: A touring machine: prototyping 3D mobile augmented reality systems for exploring the urban environment. Pers. Technol. 1, 208–217 (1997)

    Article  Google Scholar 

  5. Ioannidi, A., Gavalas, D., Kasapakis, V.: Flaneur: augmented exploration of the architectural urbanscape, In: Proceedings of the Symposium on Computers and Communications (ISCC), pp. 529–533 (2017)

    Google Scholar 

  6. Kasapakis, V., Gavalas, D.: Occlusion handling in outdoors augmented reality games. Multimedia Tools Appl. 76, 9829–9854 (2017)

    Article  Google Scholar 

  7. Kasapakis, V., Gavalas, D., Galatis, P.: Augmented reality in cultural heritage: field of view awareness in an archaeological site mobile guide. J. Ambient Intell. Smart Environ. 8, 501–514 (2016)

    Article  Google Scholar 

  8. Langlotz, T., Wagner, D., Mulloni, A., Schmalstieg, D.: Online creation of panoramic augmented reality annotations on mobile phones. Pervasive Comput. 11, 56–63 (2012)

    Article  Google Scholar 

  9. Naimark, L., Foxlin, E.: Circular data matrix fiducial system and robust image processing for a wearable vision-inertial self-tracker. In: Proceedings of the 1st International Symposium on Mixed and Augmented Reality, p. 27 (2002)

    Google Scholar 

  10. Pintaric, T.: An adaptive thresholding algorithm for the augmented reality toolkit. In: Proceeding of the International Augmented Reality Toolkit Workshop, p. 71 (2003)

    Google Scholar 

  11. Schroeder, J.: Andengine for Android Game Development Cookbook. Packt Publishing Ltd., Birmingham (2013)

    Google Scholar 

  12. Singhal, M., Shukla, A.: Implementation of location based services in Android using GPS and web services. Int. J. Comput. Sci. Issues 9, 237–242 (2012)

    Google Scholar 

  13. Tian, Y., Long, Y., Xia, D., Yao, H., Zhang, J.: Handling occlusions in augmented reality based on 3D reconstruction method. Neurocomputing 156, 96–104 (2015)

    Article  Google Scholar 

  14. Vlahakis, V., Ioannidis, M., Karigiannis, J., Tsotros, M., Gounaris, M., Stricker, D., Gleue, T., Daehne, P., Almeida, L.: Archeoguide: an augmented reality guide for archaeological sites. Computer Graph. Appl. 22, 52–60 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlasios Kasapakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kasapakis, V., Gavalas, D., Elena, D. (2018). Robust Outdoors Marker-Based Augmented Reality Applications: Mitigating the Effect of Lighting Sensitivity. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10850. Springer, Cham. https://doi.org/10.1007/978-3-319-95270-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95270-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95269-7

  • Online ISBN: 978-3-319-95270-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics