Skip to main content

Dynamic Data Driven Application Systems (DDDAS) for Multimedia Content Analysis

  • Chapter
  • First Online:
Handbook of Dynamic Data Driven Applications Systems

Abstract

With ubiquitous data acquired from sensors, there is an ever increasing ability to abstract content from the environment. Multimedia content exists in many data forms such as surveillance data from video, reports from documents and twitter, and signals from systems. Current discussions revolve around dynamic data-driven applications systems (DDDAS), big data, cyber-physical systems, and Internet of things (IoT); each of which requires data modeling. Key elements include a computing environment that should match the application, time horizon, and queries for which the data is needed. In this chapter, we discuss the DDDAS paradigm of sensor measurements, statistical processing, environmental modeling, and software implementation to deliver content on demand, given the context of the environment. DDDAS provides a framework to control the information flow for rapid decision making, model updating, and being prepared for the unexpected query. Experimental results demonstrate the DDDAS-based Live Video Computing DataBase Modeling approach to allow data discovery, model updates, and query-based flexibility for awareness of unknown situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Y. Bazilevs, A.L. Marsdan, et al., Toward a computational steering framework for large-scale composite structures based on continually and dynamically injected sensor data. Procedia Comput. Sci. 9, 1149–1158 (2012)

    Article  Google Scholar 

  2. B. Peherstorfer, K. Willcox, Detecting and adapting to parameter changes for reduced models of dynamic data-driven application systems. Procedia Comput. Sci. 51, 2553–2562 (2015)

    Article  Google Scholar 

  3. S. Imai, A. Galli, C.A. Varela, Dynamic data-driven avionics systems: Inferring failure modes from data stream. Procedia Comput. Sci. 51, 1665–1674 (2015)

    Article  Google Scholar 

  4. R. McCune, R. Purta, M. Dobski, A. Jaworski, G. Madey et al., Investigations of dddas for command and control of uav swarms with agent-based modeling, in Proceedings Winter Simulation Conference (2013) pp. 1467–1478

    Google Scholar 

  5. T. Henderson, A. Joshi, W. Wang, N. Tirpankar, et al., Bayesian computational sensor networks: small-scale structural health monitoring. Procedia Comput. Sci. 51, 2603–2612 (2015)

    Article  Google Scholar 

  6. B. Uzkent, M.J. Hoffman, A. Vodacek, J.P. Kerekes, B. Chen, Feature matching and adaptive prediction models in an object tracking DDDAS. Procedia Comput. Sci. 18, 1939–1948 (2013)

    Article  Google Scholar 

  7. R. Fujimoto, A. Guin, M. Hunter, H. Park, G. Kanitkar, A dynamic data driven application system for vehicle tracking. Procedia Comput Sci 29, 1203–1215 (2014)

    Article  Google Scholar 

  8. S.S. Bhattacharyya, M. van der Schaar, O. Atan, C. Tekin, K. Sudusinghe, Sudusinghe, Data-driven stream mining systems for computer vision, Ch12, in Advances in Embedded Computer Vision, ed. by B. Kisacanin, M. Gelautz (Springer International Publishing, Cham, 2014)

    Google Scholar 

  9. S. Chakravarthy, A. Aved, S. Shirvani, M. Annappa, et al., Adapting stream processing framework for video analysis. Procedia Comput. Sci. 51, 2648–2657 (2015)

    Article  Google Scholar 

  10. E. Blasch, A.J. Aved, Dynamic data-driven application system (DDDAS) for video surveillance user support. Procedia Comput. Sci. 51, 2503–2517 (2015)

    Article  Google Scholar 

  11. A.J. Aved, E. Blasch, Multi-INT query language for DDDAS designs. Procedia Comput. Sci. 51, 2518–2523 (2015)

    Article  Google Scholar 

  12. V. Maroulas, K. Kang, I.D. Shizas, A learning drift homotopy particle filter, in International Conference on Information Fusion, (2015)

    Google Scholar 

  13. I.D. Schizas, V. Maroulas, Dynamic data driven sensor network selection and tracking. Procedia Comput. Sci. 51, 2583–2592 (2015)

    Article  Google Scholar 

  14. E. Blasch, L. Hong, Data association through fusion of object track and identification sets, International Conference on Information Fusion, (2000)

    Google Scholar 

  15. N. Virani, S. Marcks, S. Sarkar, K. Mukerjee, A. Ray, S. Phoha, Dynamic data driven sensor Array fusion for object detection and classification. Procedia Comput. Sci. 18, 2046–2055 (2013)

    Article  Google Scholar 

  16. E. Blasch, G. Seetharaman et al., Dynamic data driven applications systems (DDDAS) modeling for automatic object recognition, in Proceedings of SPIE, vol. 8744 (2013)

    Google Scholar 

  17. B. Uzkent, M.J. Hoffman, A. Vodacek, Spectral validation of measurements in a vehicle tracking DDDAS. Procedia Comput. Sci. 51, 2493–2502 (2015)

    Article  Google Scholar 

  18. J.B. Weissman, V. Kumar, V. Chandola et al., DDDAS/ITR: A data mining and exploration middleware for grid and distributed computing, in International Conference on Computational Science (2007)

    Google Scholar 

  19. B. Liu, Y. Chen, et al., Information fusion in a cloud computing era: A systems-level perspective. IEEE Aerosp. Electron. Syst. Mag. 29(10), 16–24 (2014)

    Article  Google Scholar 

  20. X. Li, J. Dennis, G. Gao, W. Lim, H. Wei, C. Yang, R. Pavel, FreshBreeze: A data flow approach for meeting DDDAS challenges. Procedia Comput. Sci. 51, 2573–2582 (2015)

    Article  Google Scholar 

  21. V. Hebbur, V.S. Rao, A. Sandu, Parallel solution of DDDAS variational inference problems. Procedia Comput. Sci. 51, 2474–2482 (2015)

    Article  Google Scholar 

  22. K. Sudusinghe, Y. Jiao, H.B. Salem, M. van der Schaar, S. Bhattacharyya, Multiobjective design optimization in the lightweight dataflow for DDDAS environment (LiD4E). Procedia Comput. Sci. 51, 2563–2572 (2015)

    Article  Google Scholar 

  23. Z. Liu, E. Blasch, Z. Xue, R. Langaniere, W. Wu, Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: A comparative survey. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 94–109 (2012)

    Article  Google Scholar 

  24. E. Blasch, S. Plano, Cognitive fusion analysis based on context, in Proceedings of SPIE, vol. 5434 (2004)

    Google Scholar 

  25. E. Blasch, I. Kadar, K. Hintz, J. Biermann, et al., Resource management coordination with level 2/3 fusion issues and challenges. IEEE Aerosp. Electron. Syst. Mag. 23(3), 32–46 (2008)

    Article  Google Scholar 

  26. E. Blasch, E. Bosse, D.A. Lambert, High-Level Information Fusion Management and Systems Design (Artech House, Norwood, 2012)

    Google Scholar 

  27. E. Blasch, Y. Al-Nashif, S. Hariri, Static versus dynamic data information fusion analysis using DDDAS for cyber trust. Procedia Comput. Sci. 29, 1299–1313 (2014)

    Article  Google Scholar 

  28. Y. Badr, S. Hariri, Y. Al-Nashif, E. Blasch, Resilient and trustworthy dynamic data-driven application systems (DDDAS) Services for Crisis Management Environments. Procedia Comput. Sci. 51, 2623–2637 (2015)

    Article  Google Scholar 

  29. L. Xiong, V. Sunderam, Security and privacy dimensions in next generation DDDAS/Infosymbiotic systems: A position paper. Procedia Comput. Sci. 51, 2483–2492 (2015)

    Article  Google Scholar 

  30. N. Nguyen, M.M.H. Khan, Context aware data acquisition framework for dynamic data driven applications systems (DDDAS), in IEEE MILCOM (2013) pp. 334–341

    Google Scholar 

  31. P. Tagade, H. Seybold, S. Ravela, Mixture ensembles for data assimilation in dynamic data-driven environmental systems. Procedia Comput. Sci. 29, 1266–1276 (2014)

    Article  Google Scholar 

  32. S. Ravela, Dynamic data-driven deformable reduced models for coherent fluids. Procedia Comput. Sci. 51, 2464–2473 (2015)

    Article  Google Scholar 

  33. L. Peng, M. Silic, R. O'Donnell, K. Mohseni, A DDDAS plume monitoring system with reduced Kalman filter. Procedia Comput. Sci. 51, 2533–2542 (2015)

    Article  Google Scholar 

  34. X. Shi, H. Damgacioglu, N. Celik, A dynamic data driven approach for operation planning of microgrids. Procedia Comput. Sci. 51, 2543–2552 (2015)

    Article  Google Scholar 

  35. E. Blasch, Derivation of a Belief Filter for Simultaneous High Range Resolution Radar Tracking and Identification, Ph.D. Thesis, Wright State University, (1999)

    Google Scholar 

  36. A.J. Aved, Scene Understanding for Real Time Processing of Queries over Big Data Streaming Video, PhD Dissertation, University of Central Florida, (2013)

    Google Scholar 

  37. E. Blasch, G. Seetharaman, K. Reinhardt, Dynamic data driven applications system concept for information fusion. Procedia Comput. Sci. 18, 1999–2007 (2013)

    Article  Google Scholar 

  38. H. Ling, L. Bai et al., Robust infrared vehicle tracking across object pose change using L1 regularization, International Conference on Information Fusion, (2010)

    Google Scholar 

  39. E. Blasch, Z. Wang, H. Ling, K. Palaniappan, G. Chen, D. Shen, A Aved, Video-based activity analysis using the L1 tracker on VIRAT data, IEEE Applied Imagery Pattern Recognition Workshop, (2013)

    Google Scholar 

  40. G. Chen, D. Shen, C. Kwan, et al., Game theoretic approach to threat prediction and situation awareness. J. Adv. Inf. Fusion 2(1), 1–14 (2007)

    Google Scholar 

  41. E. Blasch, Sensor, user, mission (SUM) resource management and their interaction with level 2/3 fusion, in International Conference on Information Fusion, (2006)

    Google Scholar 

  42. E. Blasch, A. Steinberg, S. Das, J. Llinas, C-Y. Chong, O. Kessler, E. Waltz, F. White, Revisiting the JDL model for information exploitation, in International Conference on Information Fusion, (2013)

    Google Scholar 

  43. E.P. Blasch, S.K. Rogers, H. Holloway, J. Tierno, E.K. Jones, R.I. Hammoud, QuEST for information fusion in multimedia reports. Int. J. Monit. Surveill. Technol. Res. 2(3), 1–30 (2014)

    Google Scholar 

  44. G. Klein, B. Moon, R. Hoffman, Making sense of sensemaking 1: Alternative perspectives. IEEE Intell. Syst. 21(4), 70–73 (2006)

    Article  Google Scholar 

  45. L. A. Hendricks, S. Venugopalan, M. Rohrbach et al., Deep compositional captioning: Describing novel object categories without paired training data, arXiv:1511.05284 [cs.CV], Nov. (2015)

    Google Scholar 

  46. S.J. Pan, Q. Yang, Survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  47. Department of Defense Science Board, The role of autonomy in DoD systems, July, 2012

    Google Scholar 

  48. R.I. Hammoud, C.S. Sahin et al., Automatic Association of Chats and Video Tracks for Activity Learning and Recognition in Aerial Video Surveillance, Sensors, 14, 19843–19860 (2014)

    Google Scholar 

  49. E. Blasch, Decisions-to-data using level 5 information fusion, in Proceedings of SPIE, vol. 9079 (2014)

    Google Scholar 

  50. B. Kahler, E. Blasch, Sensor management fusion using operating conditions, in Proceedings of IEEE National Aerospace Electronics Conference (NAECON) (2008)

    Google Scholar 

  51. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, Query by image and video content: The QBIC system. Computer 28, 23–32 (1995)

    Article  Google Scholar 

  52. S.F. Chang, A. Eleftheriadis, R. McClintock, Next-generation content representation, creation, and searching for new-media applications in education. Proc. IEEE 86, 884–904 (1998)

    Article  Google Scholar 

  53. Y. Jianfeng, Z. Yang, L. Zhanhuai, A multimedia document database model based on multi-layered description supporting complex multimedia structural and semantic contents, in Proceedings of the International Multimedia Modelling Conference (2004) pp. 33–39

    Google Scholar 

  54. J.D.N. Dionisio, A.F. Cárdenas, A unified data model for representing multimedia, timeline, and simulation data. IEEE Trans. Knowl. Data Eng. 10(5), 746–767 (1998)

    Article  Google Scholar 

  55. A. Yoshitaka, T. Ichikawa, A survey on content-based retrieval for multimedia databases. IEEE Trans. Knowl. Data Eng. 11(1), 81–93 (1999)

    Article  Google Scholar 

  56. C. Shen, S. Wu, N. Sane, H. Wu, W. Plishker, S.S. Bhattacharyya, Design and synthesis for multimedia systems using the objected dataflow interchange format. IEEE Trans. Multimedia 14(3), 630–640 (2012)

    Article  Google Scholar 

  57. S.S. Bhattacharyya, E. Deprettere, R. Leupers, J. Takala (eds.), Handbook of Signal Processing Systems, 2nd edn, (Springer, 2013). ISBN: 978-1-4614-6858-5 (Print); 978-1-4614-6859-2 (Online)

    Google Scholar 

  58. E. Blasch, T. Connare, Improving track maintenance through group tracking, in Proceedings of the Workshop on Estimation, Tracking, and Fusion; A Tribute to Yaakov Bar Shalom, May (2001) pp. 360–371

    Google Scholar 

  59. H. Ling, Y. Wu et al., Evaluation of visual tracking in extremely low frame rate wide area motion imagery, in International Conference on Information Fusion (2011)

    Google Scholar 

  60. S.G. Alsing et al., Three-dimensional receiver operating characteristic (ROC) trajectory concepts for the evaluation of object recognition algorithms faced with the unknown object detection problem. Proc. SPIE 3718, 449–458 (1999)

    Article  Google Scholar 

  61. L. Snidaro, J. Garcia, et al. (eds.), Context-Enhanced Information Fusion: Boosting Real-World Performance with Domain Knowledge, Springer, (2016)

    Google Scholar 

  62. A. Panasyuk, E. Blasch, S.E. Kase, L. Bowman, Extraction of semantic activities from twitter data, in Proceedings of International Conference on Semantic Technologies for Intelligence, Defense, and Security (STIDS) (2013)

    Google Scholar 

  63. R.I. Hammoud, C.S. Sahin, et al., Automatic Association of Chats and Video Tracks for activity learning and recognition in aerial video surveillance. Sensors 14, 19843–19860 (2014)

    Article  Google Scholar 

  64. J. Gao, H. Ling, et al., Pattern of life from WAMI objects tracking based on visual context-aware tracking and infusion network models, in Proceedings of SPIE, vol. 8745 (2013)

    Google Scholar 

  65. J. Dunık, O. Straka, M. Simandl, et al., Random-point-based filters in object tracking. IEEE Trans. Aerosp. Electron. Syst. 51(2), 1403–1421 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the Air Force Office of Scientific Research (AFOSR) under the Dynamic Data Driven Application Systems program and the Air Force Research Lab. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the United States Air Force.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blasch, E., Aved, A., Bhattacharyya, S.S. (2018). Dynamic Data Driven Application Systems (DDDAS) for Multimedia Content Analysis. In: Blasch, E., Ravela, S., Aved, A. (eds) Handbook of Dynamic Data Driven Applications Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-95504-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95504-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95503-2

  • Online ISBN: 978-3-319-95504-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics