Skip to main content

Timed Vacuity

  • Conference paper
  • First Online:
Book cover Formal Methods (FM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10951))

Included in the following conference series:

Abstract

Vacuity is a leading sanity check in model-checking, applied when the system is found to satisfy the specification. The check detects situations where the specification passes in a trivial way, say when a specification that requires every request to be followed by a grant is satisfied in a system with no requests. Such situations typically reveal problems in the modelling of the system or the specification, and indeed vacuity detection is a part of most industrial model-checking tools.

Existing research and tools for vacuity concern discrete-time systems and specification formalisms. We introduce real-time vacuity, which aims to detect problems with real-time modelling. Real-time logics are used for the specification and verification of systems with a continuous-time behavior. We study vacuity for the branching real-time logic TCTL, and focus on vacuity with respect to the time constraints in the specification. Specifically, the logic TCTL includes the temporal operator \(U^J\), which specifies real-time eventualities in real-time systems: the parameter is an interval with integral boundaries that bounds the time in which the eventuality should hold. We define several tightenings for the \(U^J\) operator. These tightenings require the eventuality to hold within a strict subset of J. We prove that vacuity detection for TCTL is PSPACE-complete, thus it does not increase the complexity of model-checking of TCTL. Our contribution involves an extension, termed TCTL\(^+\), of TCTL, which allows the interval J not to be continuous, and for which model checking stays in PSPACE. Finally, we describe a method for ranking vacuity results according to their significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The above definition assumes that \(\psi \) appears once in \(\varPhi \), or at least that all its occurrences are of the same polarity; a definition that is independent of this assumption replaces \(\psi \) by a universally quantified proposition [5]. Alternatively, one could focus on a single occurrence of \(\psi \).

  2. 2.

    As discussed on Sect. 1, we assumes that \(\psi \) appears once in \(\varPhi \) or focus on a single occurrence of \(\psi \) in \(\varPhi \).

  3. 3.

    A similar construction has been used in [1] for showing the lower bound of model-checking TCTL formulas, but the proof we have here is different and more involved.

References

  1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Comput. 104(1), 2–34 (1993)

    Article  MathSciNet  Google Scholar 

  2. Alur, R., Dill, D.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–236 (1994)

    Article  MathSciNet  Google Scholar 

  3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)

    Article  MathSciNet  Google Scholar 

  4. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031988

    Chapter  Google Scholar 

  5. Armoni, R., et al.: Enhanced vacuity detection in linear temporal logic. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 368–380. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_35

    Chapter  Google Scholar 

  6. Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in ACTL formulas. Formal Methods Syst. Des. 18(2), 141–162 (2001)

    Article  Google Scholar 

  7. Bustan, D., Flaisher, A., Grumberg, O., Kupferman, O., Vardi, M.Y.: Regular vacuity. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 191–206. Springer, Heidelberg (2005). https://doi.org/10.1007/11560548_16

    Chapter  Google Scholar 

  8. Chechik, M., Gheorghiu, M., Gurfinkel, A.: Finding environment guarantees. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 352–367. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71289-3_27

    Chapter  Google Scholar 

  9. Chockler, H., Gurfinkel, A., Strichman, O.: Beyond vacuity: towards the strongest passing formula. In: Proceedings of the 8th International Conference on Formal Methods in Computer-Aided Design, pp. 1–8 (2008)

    Google Scholar 

  10. Chockler, H., Halpern, J.Y.: Responsibility and blame: a structural-model approach. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp. 147–153 (2003)

    Google Scholar 

  11. Chockler, H., Strichman, O.: Before and after vacuity. Formal Methods Syst. Des. 34(1), 37–58 (2009)

    Article  Google Scholar 

  12. Clarke, E., Grumberg, O., Long, D.: Verification tools for finite-state concurrent systems. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 124–175. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58043-3_19

    Chapter  Google Scholar 

  13. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of counterexamples and witnesses in symbolic model checking. In: Proceedings of the 32st Design Automation Conference, pp. 427–432. IEEE Computer Society (1995)

    Google Scholar 

  14. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42, 857–907 (1995)

    Article  MathSciNet  Google Scholar 

  15. Ben-David, S., Kupferman, O.: A framework for ranking vacuity results. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 148–162. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-8_12

    Chapter  MATH  Google Scholar 

  16. Dokhanchi, A., Hoxha, B., Fainekos, G.E.: Formal requirement elicitation and debugging for testing and verification of cyber-physical systems. CoRR, abs/1607.02549 (2016)

    Google Scholar 

  17. Emerson, E.A., Halpern, J.Y.: Sometimes and not never revisited: on branching versus linear time. J. ACM 33(1), 151–178 (1986)

    Article  MathSciNet  Google Scholar 

  18. Fisman, D., Kupferman, O., Sheinvald-Faragy, S., Vardi, M.Y.: A framework for inherent vacuity. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp. 7–22. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01702-5_7

    Chapter  Google Scholar 

  19. Gurfinkel, A., Chechik, M.: Extending extended vacuity. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 306–321. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30494-4_22

    Chapter  Google Scholar 

  20. Gurfinkel, A., Chechik, M.: How vacuous is vacuous? In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 451–466. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2_34

    Chapter  Google Scholar 

  21. Henzinger, T.A., Manna, Z., Pnueli, A.: Timed transition systems. In: de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 226–251. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031995

    Chapter  Google Scholar 

  22. Kupferman, O.: Sanity checks in formal verification. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 37–51. Springer, Heidelberg (2006). https://doi.org/10.1007/11817949_3

    Chapter  Google Scholar 

  23. Kupferman, O., Li, W., Seshia, S.A.: A theory of mutations with applications to vacuity, coverage, and fault tolerance. In: Proceedings of the 8th International Conference on Formal Methods in Computer-Aided Design, pp. 1–9 (2008)

    Google Scholar 

  24. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Softw. Tools Technol. Transf. 4(2), 224–233 (2003)

    Article  Google Scholar 

  25. Namjoshi, K.S.: An efficiently checkable, proof-based formulation of vacuity in model checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 57–69. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9_5

    Chapter  Google Scholar 

  26. Purandare, M., Somenzi, F.: Vacuum cleaning CTL formulae. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 485–499. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_39

    Chapter  Google Scholar 

  27. Purandare, M., Wahl, T., Kroening, D.: Strengthening properties using abstraction refinement. In: Proceedings of Design, Automation and Test in Europe (DATE), pp. 1692–1697. IEEE (2009)

    Google Scholar 

  28. Stockmeyer, L.J.: On the combinational complexity of certain symmetric boolean functions. Math. Syst. Theory 10, 323–336 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shibashis Guha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chockler, H., Guha, S., Kupferman, O. (2018). Timed Vacuity. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds) Formal Methods. FM 2018. Lecture Notes in Computer Science(), vol 10951. Springer, Cham. https://doi.org/10.1007/978-3-319-95582-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95582-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95581-0

  • Online ISBN: 978-3-319-95582-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics