
Approximate Partial Order Reduction?

Chuchu Fan, Zhenqi Huang, and Sayan Mitra

University of Illinois at Urbana-Champaign, ECE Department
{cfan10, zhuang25, mitras}@illinois.edu

Abstract. We present a new partial order reduction method for reachability anal-
ysis of nondeterministic labeled transition systems over metric spaces. Nonde-
terminism arises from both the choice of the initial state and the choice of ac-
tions, and the number of executions to be explored grows exponentially with their
length. We introduce a notion of ε-independence relation over actions that relates
approximately commutative actions; ε-equivalent action sequences are obtained
by swapping ε-independent consecutive action pairs. Our reachability algorithm
generalizes individual executions to cover sets of executions that start from dif-
ferent, but δ-close initial states, and follow different, but ε-independent, action
sequences. The constructed over-approximations can be made arbitrarily precise
by reducing the δ, ε parameters. Exploiting both the continuity of actions and
their approximate independence, the algorithm can yield an exponential reduc-
tion in the number of executions explored. We illustrate this with experiments on
consensus, platooning, and distributed control examples.

1 Introduction

Actions of different computing nodes interleave arbitrarily in distributed systems. The
number of action sequences that have to be examined for state-space exploration grows
exponentially with the number of nodes. Partial order reduction methods tackle this
combinatorial explosion by eliminating executions that are equivalent, i.e., do not pro-
vide new information about reachable states (see [19,27,22] and the references therein).
This equivalence is based on independence of actions: a pair of actions are independent
if they commute, i.e., applying them in any order results in the same state. Thus, of all
execution branches that start and end at the same state, but perform commuting actions
in different order, only one has to be explored. Partial order reduction methods have
become standard tools for practical software verification. They have been successfully
applied to election protocols [2], indexers [18], file systems [9], security protocol [8],
distributed schedulers [3], among many others.

Current partial order methods are limited when it comes to computation with nu-
merical data and physical quantities (e.g., sensor networks, vehicle platoons, IoT ap-
plications, and distributed control and monitoring systems). First, a pair of actions are
considered independent only if they commute exactly; actions that nearly commute—
as are common in these applications—cannot be exploited for pruning the exploration.

? This work is supported by the grants CAREER 1054247 and CCF 1422798 from the National
Science Foundation

ar
X

iv
:1

61
0.

06
31

7v
3

 [
cs

.L
O

]
 1

0
M

ay
 2

01
8

Second, conventional partial order methods do not eliminate executions that start from
nearly similar states and experience equivalent action sequences.

We address these limitations and propose a state space exploration method for non-
deterministic, infinite state transition systems based on approximate partial order re-
duction. Our setup has two mild assumptions: (i) the state space of the transition system
has a discrete partL and a continuous partX and the latter is equipped with a metric; (ii)
the actions onX are continuous functions. Nondeterminism arises from both the choice
of the initial state and the choice of actions. Fixing an initial state q0 and a sequence of
actions τ (also called a trace), uniquely defines an execution of the system which we
denote by ξq0,τ . For a given approximation parameter ε ≥ 0, we define two actions a
and b to be ε-independent if from any state q, the continuous parts of states resulting
from applying action sequences ab and ba are ε-close. Two traces ofA are ε-equivalent
if they result from permuting ε-independent actions. To compute the reachable states
of A using a finite (small) number of executions, the key is to generalize or expand an
execution ξq0,τ by a factor r ≥ 0, so that, this expanded set contains all executions that
start δ-close to q0 and experience action sequences that are ε-equivalent to τ . We call
this r a (δ, ε)-trace equivalent discrepancy factor (ted) for ξ.

For a fixed trace τ , the only source of nondeterminism is the choice of the initial
state. The reachable states fromBδ(q0)—a δ-ball around q0—can be over-approximated
by expanding ξq0,τ by a (δ, 0)-ted . This is essentially the sensitivity of ξq0,τ to q0. Tech-
niques for computing it are now well-developed for a broad class of models [13,11,14,15].

Fixing q0, the only source of nondeterminism is the possible sequence of actions
in τ . The reachable states from q0 following all possible valid traces can be over-
approximated by expanding ξq0,τ by a (0, ε)-ted , which includes states reachable by all
ε-equivalent action sequences. Computing (0, ε)-ted uses the principles of partial order
reduction. However, unlike exact equivalence, here, starting from the same state, the
states reached at the end of executing two ε-equivalent traces are not necessarily iden-
tical. This breaks a key assumption necessary for conventional partial order algorithms:
here, an action enabled after ab may not be enabled after ba. Of course, considering
disabled actions can still give over-approximation of reachable states, but, we show that
the precision of approximation can be improved arbitrarily by shrinking δ and ε.

Thus, the reachability analysis in this paper brings together two different ideas for
handling nondeterminism: it combines sensitivity analysis with respect to initial state
and ε-independence of actions in computing (δ, ε)-ted , i.e., upper-bounds on the dis-
tance between executions starting from initial states that are δ-close to each other and
follow ε-equivalent action sequences (Theorem 1). As a matter of theoretical interest,
we show that the approximation error can be made arbitrarily small by choosing suf-
ficiently small δ and ε (Theorem 2). We validate the correctness and effectiveness of
the algorithm with three case studies where conventional partial order reduction would
not help: an iterative consensus protocol, a simple vehicle platoon control system, and
a distributed building heating system. In most cases, our reachability algorithm reduces
the number of explored executions by a factor of O(n!), for a time horizon of n, com-
pared with exhaustive enumeration. Using these over-approximations, we could quickly
decide safety verification questions. These examples illustrate that our method has the

potential to improve verification of a broader range of distributed systems for consen-
sus [5,16,26,25], synchronization [30,28] and control [17,24].

Related work. There are two main classes of partial order reduction methods. The per-
sistent/ample set methods compute a subset of enabled transitions –the persistent set (or
ample set)– such that the omitted transitions are independent to those selected [10,2].
The reduced system which only considers the transitions in the persistent set is guaran-
teed to represent all behaviors of the original system. The persistent sets and the reduced
systems are often derived by static analysis of the code. More recently, researchers have
developed dynamic partial order reduction methods using the sleep set to avoid the static
analysis [31,1,18]. These methods examine the history of actions taken by an execution
and decide a set of actions that need to be explored in the future. The set of omitted
actions is the sleep set. In [6], Cassez and Ziegler introduce a method to apply symbolic
partial order reduction to infinite state discrete systems.

Analysis of sensitivity and the related notion of robustness analysis functions, au-
tomata, and executions has recently received significant attention [7,11,29]. Majumdar
and Saha [23] present an algorithm to compute the output deviation with bounded dis-
turbance combining symbolic execution and optimization. In [7] and [29], Chaudhuri
etc., present algorithms for robustness analysis of programs and networked systems.
Automatic techniques for local sensitivity analysis combining simulations and static
analysis and their applications to verification of hybrid systems have been presented
in [11,14,15].

In this paper, instead of conducting conventional partial order reduction, we propose
a novel method of approximate partial order reduction, and combine it with sensitivity
analysis for reachability analysis and safety verification for a broader class of systems.

2 Preliminaries

Notations. The state of our labeled transition system is defined by the valuations of a set
of variables. Each variable v has a type, type(v), which is either the set of reals or some
finite set. For a set of variables V , a valuation v maps each v ∈ V to a point in type(v).
The set of all valuations of V is Val(V). R denotes the set of reals, R≥0 the set of non-
negative reals, and N the set of natural numbers. For n ∈ N, [n] = {0, . . . , n− 1}. The
spectral radius ρ(A) of a square matrix A ∈ Rn×n is the largest absolute value of its
eigenvalues. A square matrix A is stable if its spectral radius ρ(A) < 1. For a set of
tuples S = {〈sj1, . . . , sjn〉j}, S d i denotes the set {sji} which is the set obtained by
taking the ith component of each tuple in S.

2.1 Transition systems

Definition 1. A labeled transition systemA is a tuple 〈X ∪L,Θ,A,→〉 where (i) X is
a set of real-valued variables and L is a set of finite-valued variables. Q = Val(X ∪ L)
is the set of states, (ii) Θ ⊆ Q is a set of initial states such that the sets of real-valued
variables are compact, (iii) A is a finite set of actions, and (iv) →⊆ Q × A × Q is a
transition relation.

A state q ∈ Q is a valuation of the real-valued and finite-valued variables. We denote
by q.X and q.L, respectively, the real-valued and discrete (finite-valued) parts of the
state q. We will view the continuous part q.X as a vector in R|X| by fixing an arbitrary
ordering of X . The norm | · | on q.X is an arbitrary norm unless stated otherwise. For
δ ≥ 0, the δ-neighborhood of q is denoted by Bδ(q)

∆
= {q′ ∈ Q : q′.L = q.L∧ |q′.X −

q.X| ≤ δ}. For any (q, a, q′) ∈→, we write q a→ q′. For any action a ∈ A, its guard
is the set guard(a) = {q ∈ Q | ∃q′ ∈ Q, q a→ q′}. We assume that guards are closed
sets. An action a is deterministic if for any state q ∈ Q, if there exists q1, q2 ∈ Q with
q
a→ q1 and q a→ q2, then q1 = q2.

Assumption 1 (i) Actions are deterministic. For notational convenience, the name of
an action a is identified with its transition function, i.e., for each q ∈ guard(a), q a→
a(q). We extend this notation to all states, i.e., even those outside guard(a). (ii) For any
state pair q, q′, if q.L = q′.L then a(q).L = a(q′).L.

Executions and traces. For a deterministic transition system, a state q0 ∈ Q and a finite
action sequence (also called a trace) τ = a0a1 . . . an−1 uniquely specifies a potential
execution ξq0,τ = q0, a0, q1, a1, . . . , an−1, qn where for each i ∈ [n], ai(qi) = qi+1.
A valid execution (also called execution for brevity) is a potential execution with (i)
q0 ∈ Θ and (ii) for each i ∈ [n], qi ∈ guard(ai). That is, a valid execution is a potential
execution starting from the initial set with each action ai enabled at state qi. For any
potential execution ξq0,τ , its trace is the action sequence τ , i.e., trace(ξq0,τ) = τ ∈ A∗.
We denote by len(τ) the length of τ . For any for i ∈ [len(τ)], τ(i) is the i-th action in τ .
The length of ξq0,τ is the length of its trace and ξq0,τ (i) = qi is the state visited after the
i-th transition. The first and last state on a execution ξ are denoted as ξ. fstate = ξ(0)
and ξ. lstate = ξ(len(ξ)).

For a subset of initial states S ⊆ Θ and a time bound T ≥ 0, Execs(S, T) is
the set of length T executions starting from S. We denote the reach set at time T
by Reach(S, T)

∆
= {ξ. lstate | ξ ∈ Execs(S, T)}. Our goal is to precisely over-

approximate Reach(Θ, T) exploiting partial order reduction.

1 automaton Consensus(n ∈ N, N ∈ N)
variables

3 x : Rn

d : BN
5 initially

x[i] ∈ [−4, 4] for each i ∈ [n]
7 d[i] := false for each i ∈ [n]

1transitions
ai for each i ∈ [N]

3pre ¬di
eff x := Aix ∧ d[i] := true

5a⊥
pre ∧i∈[N]d[i]

7eff d[i] := false for each i ∈ [N]

Fig. 1: Labeled transition system model of iterative consensus.

Example 1 (Iterative consensus). An n-dimensional iterative consensus protocol with
N processes is shown in Figure 1. The real-valued part of state is a vector x in Rn and
each process i changes the state by the linear transformation x ← Aix. The system
evolves in rounds: in each round, each process i updates the state exactly once but in
arbitrary order. The boolean vector dmarks the processes that have acted in a round. The
set of actions is {ai}i∈[N] ∪ {a⊥}. For each i ∈ [N], the action ai is enabled when d[i]
is false and when it occurs x is updated asAix, whereAi is an n×nmatrix. The action

a⊥ can occur only when all d[i]’s are set to true and it resets all the d[i]’s to false . For an
instance with N = 3, a valid execution could have the trace τ = a0a2a1a⊥a1a0a2a⊥.
It can be checked that Assumption 1 holds. In fact, the assumption will continue to hold
if Aix is replaced by a nonlinear transition function ai : Rn → Rn.

2.2 Discrepancy functions

A discrepancy function bounds the changes in a system’s executions as a continuous
function of the changes in its inputs. Methods for computing discrepancy of dynamical
and hybrid systems are now well-developed [21,14,12]. We extend the notion naturally
to labeled transition systems: a discrepancy for an action bounds the changes in the
continuous state brought about by its transition function.

Definition 2. For an action a ∈ A, a continuous function βa : R≥0 → R≥0 is a
discrepancy function if for any pair of states q, q′ ∈ Q with q.L = q′.L, (i) |a(q).X −
a(q′).X| ≤ βa(|q.X − q′.X|), and (ii) βa(·)→ 0 as |q.X − q′.X| → 0.

Property (i) gives an upper-bound on the changes brought about by action a and (ii)
ensures that the bound given by βa can be made arbitrarily precise. If the action a is
Lipschitz continuous with Lipschitz constant La, then βa(|q.X − q′.X|) = La(|q.X −
q′.X|) can be used as a discrepancy function. Note that we do not assume the system
is stable. As the following proposition states, given discrepancy functions for actions,
we can reason about distance between executions that share the same trace but have
different initial states.

Proposition 1. Suppose each action a ∈ A has a discrepancy function βa. For any
T ≥ 0 and action sequence τ = a0a1a2 . . . aT , and for any pair of states q, q′ ∈ Q
with q.L = q′.L, the last states of the pair of potential executions satisfy:

ξq,τ . lstate .L = ξq′,τ . lstate .L, (1)
|ξq,τ . lstate .X − ξq′,τ . lstate .X| ≤ βaT βaT−1

. . . βa0(|q.X − q′.X|). (2)

Example 2. Consider an instance of Consensus of Example 1 with n = 3 and N = 3
with the standard 2-norm on R3. Let the matrices Ai be

A0 =

 0.2 −0.2 −0.3
−0.2 0.2 −0.1
−0.3 −0.1 0.3

 , A1 =

0.2 0.3 0.2

0.3 −0.2 0.3

0.2 0.3 0

 , A2 =

−0.1 0 0.4

0 0.4 −0.2
0.4 −0.2 −0.1

 .
It can be checked that for any pair q, q′ ∈ Q with q.L = q′.L, |ai(q).X − ai(q′).X|2 ≤
|Ai|2|q.X−q′.X|2. Where the induced 2-norms of the matrices are |A0|2 = 0.57, |A1|2 =
0.56, |A2|2 = 0.53. Thus, for any v ∈ R≥0, we can use discrepancy functions for
a0, a1, a2: βa0(v) = 0.57v, βa1(v) = 0.56v, and βa2(v) = 0.53v.

For actions with nonlinear transition functions, computing global discrepancy functions
is difficult in general but local approaches using the eigenvalues of the Jacobian matrices
are adequate for computing reachable sets from compact initial sets [15,20].

2.3 Combining sets of discrepancy functions

For a finite set of discrepancy functions {βa}a∈A′ corresponding to a set of actions
A′ ⊆ A, we define βmax = maxa∈A′{βa} as βmax(v) = maxa∈A′ βa(v), for each
v ≥ 0. From Definition 2, for each a ∈ S, βa(|q.X−q′.X|)→ 0 as |q.X−q′.X| → 0.
Hence, as the maximum of βa, we have βmax(|q.X−q′.X|)→ 0 as |q.X−q′.X| → 0.
It can be checked that βmax is a discrepancy function of each a ∈ S.

For n ≥ 0 and a function βmax defined as above, we define a function γn =∑n
i=0 β

i
max; here βi = β ◦ βi−1 for i ≥ 1 and β0 is the identity mapping. Using

the properties of discrepancy functions as in Definition 2, we can show the following
properties of {γn}n∈N.

Proposition 2. Fix a finite set of discrepancy functions {βa}a∈A′ with A′ ⊆ A. Let
βmax = maxa∈A′{βa}. For any n ≥ 0, γn =

∑n
i=0 β

i
max satisfies (i) ∀ ε ∈ R≥0 and

any n ≥ n′ ≥ 0, γn(ε) ≥ γn′(ε), and (ii) limε→0 γn(ε) = 0.

Proof. (i) For any n ≥ 1, we have γn − γn−1 = βnmax. Since βnmax = maxa∈S{βa}
for some finite S, using Definition 2, βnmax takes only non-negative values. Hence, the
sequence of functions {γn}n∈R≥0

is non-decreasing.
(ii) Using the property of discrepancy functions, we have limε→0 βmax(ε) = 0. By
induction on the nested functions, we have limε→0 β

i
max(0) for any i ≥ 0. Hence for

any n ∈ R≥0, limε→0 γn(ε) = limε→0

∑n
i=0 β

i
max(ε) = 0. ut

The function γn depends on the set of {βa}a∈A′ , but as the βs will be fixed and clear
from context, we write γn for brevity.

3 Independent actions and neighboring executions

Central to partial order methods is the notion of independent actions. A pair of actions
are independent if from any state, the occurrence of the two actions, in either order,
results in the same state. We extend this notion and define a pair of actions to be ε-
independent (Definition 3), for some ε > 0, if the continuous states resulting from
swapped action sequences are within ε distance.

3.1 Approximately independent actions

Definition 3. For ε ≥ 0, two distinct actions a, b ∈ A are ε-independent, denoted by
a

ε∼ b, if for any state q ∈ Q (i) (Commutativity) ab(q).L = ba(q).L, and (ii) (Close-
ness) |ab(q).X − ba(q).X| ≤ ε.

The parameter ε captures the degree of the approximation. Smaller the value of ε, more
restrictive the independent relation. If a and b are ε-independent with ε = 0, then
ab(q) = ba(q) and the actions are independent in the standard sense (see e.g. Definition
8.3 of [4]). Definition 3 extends the standard definition in two ways. First, b need not
be enabled at state a(q), and vice versa. That is, if ξq0,ab is an execution, we can only
infer that ξq0,ba is a potential execution and not necessarily an execution. Secondly,
with ε > 0, the continuous states can mismatch by ε when ε-independent actions are

swapped. Consequently, an action c may be enabled at ab(q) but not at ba(q). If ξq0,abc
is a valid execution, we can only infer that ξq0,bac is a potential execution and not
necessarily an execution.

We assume that the parameter ε does not depend on the state q. When computing
the value of ε for concrete systems, we could first find an invariant for the state’s real-
valued variable q.X such that q.X is bounded, then find an upper-bound of |ab(q).X −
ba(q).X| as ε. For example, if a and b are both linear mappings with a(q).X =
A1q.X + b1 and b(q).X = A2q.X + b2 and there is an invariant for q.X is such that
|q.X| ≤ r, then it can be checked that |ab(q).X − ba(q).X| = |(A2A1−A1A2)q.X +
(A2b1 −A1b2 + b2 − b1)| ≤ |A2A1 −A1A2|r + |A2b1 −A1b2 + b2 − b1|.

For a trace τ ∈ A∗ and an action a ∈ A, τ is ε-independent to a, written as τ ε∼ a,
if τ is empty string or for every i ∈ [len(τ)], τ(i) ε∼ a. It is clear that the approximate
independence relation over A is symmetric, but not necessarily transitive.

Example 3. Consider approximate independence of actions in Consensus. Fix any i, j ∈
[N] such that i 6= j and any state q ∈ Q. It can be checked that: aiaj(q).d[k] =
ajai(q).d[k] = true if k ∈ {i, j}, otherwise it is q.d[k]. Hence, we have aiaj(q).d =
ajai(q).d and the commutativity condition of Definition 3 holds. For the closeness
condition, we have |aiaj(q).x − ajai(q).x|2 = |(AiAj − AjAi)q.x|2 ≤ |AiAj −
AjAi|2|q.x|2. If the matrices Ai and Aj commute, then ai and aj are ε-approximately
independent with ε = 0.

Suppose initially x ∈ [−4, 4]3 then the 2-norm of the initial state is bounded by
the value 4

√
3. The specific matrices Ai, i ∈ [3] presented in Example 2 are all stable,

so |ai(q).x|2 ≤ |q.x|2, for each i ∈ [3] and the norm of state is non-increasing in any
transitions. Therefore, Inv = {x ∈ R3 : |x|2 ≤ 4

√
3} is an invariant of the system.

Together, we have |a0a1(q).x− a1a0(q).x|2 ≤ 0.1, |a0a2(q).x− a2a0(q).x|2 ≤ 0.07,
and |a1a2(q).x− a2a1(q).x|2 ≤ 0.17. Thus, with ε = 0.1, it follows that a0

ε∼ a1 and
a0

ε∼ a2 and ε∼ is not transitive, but with ε = 0.2, ε∼ is transitive.

3.2 (δ, ε)-trace equivalent discrepancy for action pairs

Definition 3 implies that from a single state q, executing two ε-independent actions
in either order, we end up in states that are within ε distance. The following proposi-
tion uses discrepancy to bound the distance between states reached after performing
ε-independent actions starting from different initial states q and q′.

Proposition 3. If a pair of actions a, b ∈ A are ε-independent, and the two states
q, q′ ∈ Q satisfy q.L = q′.L, then we have (i) ba(q).L = ab(q′).L, and (ii) |ba(q).X −
ab(q′).X| ≤ βb ◦ βa(|q.X − q′.X|) + ε, where βa, βb are discrepancy functions of a, b
respectively.

Proof. Fix a pair of states q, q′ ∈ Q with q.L = q′.L. Since a ε∼ b, we have ba(q).L =
ab(q).L. Using the Assumption, we have ab(q).L = ab(q′).L. Using triangular inequal-
ity, we have |ba(q).X − ab(q′).X| ≤ |ba(q).X − ba(q′).X|+ |ba(q′).X − ab(q′).X|.
The first term is bounded by βb ◦ βa(|q.X − q′.X|) using Proposition 1 and the second
is bounded by ε by Definition 3, and hence, the result follows. ut

4 Effect of ε-independent traces

In this section, we will develop an analog of Proposition 3 for ε-independent traces
(action sequences) acting on neighboring states.

4.1 ε-equivalent traces

First, we define what it means for two finite traces in A∗ to be ε-equivalent.

Definition 4. For any ε ≥ 0, we define a relation R ⊆ A∗ × A∗ such that τRτ ′ iff
there exists σ, η ∈ A∗ and a, b ∈ A such that a ε∼ b, τ = σabη, and τ ′ = σbaη. We
define an equivalence relation

ε≡ ⊆ A∗ ×A∗ called ε-equivalence, as the reflexive and
transitive closure of R.

That is, two traces τ, τ ′ ∈ A∗ are ε-equivalent if we can construct τ ′ from τ by per-
forming a sequence of swaps of consecutive ε-independent actions.

In the following proposition, states that the last states of two potential executions
starting from the same initial discrete state (location) and resulting from equivalent
traces have identical locations.

Proposition 4. Fix potential executions ξ = ξq0,τ and ξ′ = ξq′0,τ ′ . If q0.L = q′0.L and

τ
ε≡ τ ′, then ξ. lstate .L = ξ′. lstate .L.

Proof. If τ = τ ′, then the proposition follows from the Assumption. Suppose τ 6= τ ′,
from Definition 4, there exists a sequence of action sequences τ0, τ1, . . . , τk to join τ
and τ ′ by swapping neighboring approximately independent actions. Precisely the se-
quence {τi}ki=0 satisfies: (i) τ0 = τ and τk = τ ′, and (ii) for each pair τi and τi+1, there
exists σ, η ∈ A∗ and a, b ∈ A such that a ε∼ b, τi = σabη, and τi+1 = σbaη. From Def-
inition 3, swapping approximately independent actions preserves the value of the dis-
crete part of the final state. Hence for any i ∈ [k], ξq0,τi . lstate .L = ξq0,τi+1

. lstate .L.
Therefore, ξ. lstate .L = ξ′. lstate .L. ut

Next, we relate pairs of potential executions that result from ε-equivalent traces and
initial states that are δ-close.

Definition 5. Given δ, ε ≥ 0, a pair of initial states q0, q′0, and a pair traces τ, τ ′ ∈ A∗,
the corresponding potential executions ξ = ξq0,τ and ξ′ = ξq′0,τ ′ are (δ, ε)-related,

denoted by ξ
δ,ε
≈ ξ′, if q0.L = q′0.L, |q0.X − q′0.X| ≤ δ, and τ

ε≡ τ ′.

Example 4. In Example 3, we show that a0
ε∼ a1 and a0

ε∼ a2 with ε = 0.1. Consider
the executions ξ = q0, a0, q1, a1, q2, a2, q3, a⊥, q4 and ξ′ = q′0, a1, q

′
1, a2, q

′
2, a0, q

′
3, a⊥, q

′
4.

with traces trace(ξ) = a0a1a2a⊥ and trace(ξ′) = a1a2a0a⊥. For ε = 0.1, we have
a0a1a2a⊥

ε≡ a1a0a2a⊥ and a1a0a2a⊥
ε≡ a1a2a0a⊥. Since the equivalence relation

ε≡
is transitive, we have trace(ξ)

ε≡ trace(ξ′). Suppose q0 ∈ Bδ(q′0), then ξ and ξ′ are
(δ, ε)-related executions with ε = 0.1.

It follows from Proposition 4 that the discrete state (locations) reached by any pair of
(δ, ε)-related potential executions are the same. At the end of this section, in Lemma 2,
we will bound the distance between the continuous state reached by (δ, ε)-related poten-
tial executions. We define in the following this bound as what we call trace equivalent
discrepancy factor (ted), which is a constant number that works for all possible val-
ues of the variables starting from the initial set. Looking ahead, by bloating a single
potential execution by the corresponding ted , we can over-approximate the reachset of
all related potential executions. This will be the basis for the reachability analysis in
Section 5.

Definition 6. For any potential execution ξ and constants δ, ε ≥ 0, a (δ, ε)-trace equiv-
alent discrepancy factor (ted) is a nonnegative constant r ≥ 0, such that for any (δ, ε)-
related potential finite execution ξ′,

|ξ′. lstate .X − ξ. lstate .X| ≤ r.

That is, if r is a (δ, ε)-ted , then the r-neighborhood of ξ’s last state Br(ξ. lstate) con-
tains the last states of all other (δ, ε)-related potential executions.

4.2 (0, ε)-trace equivalent discrepancy for traces (on the same initial states)

In this section, we will develop an inductive method for computing (δ, ε)-ted . We begin
by bounding the distance between potential executions that differ only in the position
of a single action.

Lemma 1. Consider any ε ≥ 0, an initial state q0 ∈ Q, an action a ∈ A and a trace
τ ∈ A∗ with len(τ) ≥ 1. If τ ε∼ a, then the potential executions ξ = ξq0,τa and
ξ′ = ξq0,aτ satisfy

(i) ξ′. lstate .L = ξ. lstate .L and
(ii) |ξ′. lstate .X − ξ. lstate .X| ≤ γn−1(ε), where γn corresponds to the set of dis-

crepancy functions {βc}c∈τ for the actions in τ .

Proof. Part (i) directly follows from Proposition 4. We will prove part (ii) by induction
on the length of τ .
Base: For any trace τ of length 1, ξ and ξ′ are of the form ξ = q0, b0, q1, a, q2 and
ξ′ = q0, a, q

′
1, b0, q

′
2. Since a ε∼ b0 and the two executions start from the same state,

it follows from Definition 3 that |q′2.X − q2.X| ≤ ε. Recall from the preliminary that
γ0(ε) = β0(ε) = ε. Hence |q′2.X − q2.X| ≤ γ0(ε) holds for trace τ with len(τ) = 1.
Induction: Suppose the lemma holds for any τ with length at most n − 1. Fixed any
τ = b0b1 . . . bn−1 of length n, we will show the lemma holds for τ .

Let the potential executions ξ = ξq0,τa and ξ′ = ξq0,aτ be the form

ξ = q0, b0, q1, b1, ..., bn−1, qn, a, qn+1,

ξ′ = q0, a, q
′
1, b0, q

′
2, b1, ..., bn−1, q

′
n+1.

Fig. 2: Potential executions ξ, ξ′, and ξ′′.

It suffices to prove that |ξ. lstate .X − ξ′. lstate .X| = |qn+1.X − q′n+1.X| ≤
γn−1(ε). We first construct a potential execution ξ′′ = ξq0,b0ab1...bn−1

by swapping the
first two actions of ξ′. Then, ξ′′ is of the form: ξ′′ = q0, b0, q1, a, q

′′
2 , b1, ..., bn−1, q

′′
n+1.

The potential executions ξ, ξ′ and ξ′′ are shown in Figure 2. We first compare the poten-
tial executions ξ and ξ′′. Notice that, ξ and ξ′′ share a common prefix q0, b0, q1. Starting
from q1, the action sequence of ξ′′ is derived from trace(ξ) by inserting action a in
front of the action sequence τ ′ = b1b2 . . . bn−1.

Since τ ′ ε∼ a, applying the induction hypothesis on the length n−1 action sequence
τ ′, we get |qn+1.X − q′′n+1.X| ≤ γn−2(ε). Then, we compare the potential executions
ξ′ and ξ′′. Since b0

ε∼ a, by applying the property of Definition 3 to the first two actions
of ξ′ and ξ′′, we have |q′2.X − q′′2 .X| ≤ ε. We note that ξ′ and ξ′′ have the same suffix
of action sequence from q′2 and q′′2 . Using Proposition 1 from states q′2 and q′′2 , we have

|q′n+1.X − q′′n+1.X| ≤ βb1βb2 . . . βbn−1(|q′2.X − q′′2 .X|) ≤ βn−1(ε). (3)

Combining the bound on |q′2.X − q′′2 .X| and (3) with triangular inequality, we have
|qn+1.X − q′n+1.X| ≤ |qn+1.X − q′′n+1.X| + |q′n+1.X − q′′n+1.X| ≤ γn−2(ε) +
βn−1(ε) = γn−1(ε). ut

4.3 (δ, ε)-trace equivalent discrepancy for traces

Lemma 1 gives a way to compute (0, ε)-ted . Now, we generalize this to compute (δ, ε)-
ted , for (δ, ε)-related potential executions, with any δ ≥ 0. The following lemma gives
an inductive way of constructing ted as an action a is appended to a trace τ .

Lemma 2. For any potential execution ξ = ξq0,τ and constants δ, ε ≥ 0, if r is a (δ, ε)-
ted for ξ, and the action a ∈ A satisfies τ ε∼ a, then r′ = βa(r) + γlen(τ)−1(ε) is a
(δ, ε)-ted for ξq0,τa.

Proof. Fix any ξ′ that is (δ, ε)-related to ξ and with initial state q′0 ∈ Bδ(q0). It follows
from Proposition 4 that ξ′. lstate .L = ξ. lstate .L. It suffices to prove that |ξ′. lstate .X−
ξ. lstate .X| ≤ r′.

Since trace(ξ′)
ε≡ τa, trace(ξ′) is in a form φaη with some φη

ε≡ τ . We construct
a potential execution ξ′′ = ξq′0,φηa. The three potential executions are illustrated in
Figure 3 below.

We note that r is a ted for the the prefix (q0, τ, qn) of ξ and δ, ε. Since φη
ε≡ τ and

q′0 ∈ Bδ(q0), it follows from Definition 6 that |qn.X − q′′n.X| ≤ r. Hence

|ξ. lstate .X − ξ′′. lstate .X| ≤ βa(|qn.X − q′′n.X|) ≤ βa(r). (4)

Fig. 3: Execution ξ, its ε-equivalent execution ξ′, and execution ξ′′ that is constructed by swap-
ping action a to the back in ξ′.

On the other hand, we observe that the traces of ξ′ and ξ′′ differ only in the position of
action a. Application of Lemma 1 on ξ′ and ξ′′ yields

|ξ′. lstate .X − ξ′′. lstate .X| ≤ γlen(η)−1(ε) ≤ γlen(τ)−1(ε). (5)

Combining (4) and (5) with triangular inequality, we have

|ξ. lstate .X − ξ′. lstate .X| ≤ βa(r) + γlen(τ)−1(ε).

ut

5 Reachability with approximate partial order reduction

We will present our main algorithm (Algorithm 2) for reachability analysis with ap-
proximate partial order reduction in this section. The core idea is to over-approximate
Reach(Bδ(q0), T) by (a) computing the actual execution ξq0,τ and (b) expanding this
ξq0,τ by a (δ, ε)-ted to cover all the states reachable from any other (δ0, ε)-related po-
tential execution. Combining such over-approximations from a cover ofΘ, we get over-
approximations of Reach(Θ, T), and therefore, Algorithm 2 can be used to soundly
check for bounded safety or invariance. The over-approximations can be made arbitrar-
ily precise by shrinking δ0 and ε (Theorem 2). Of course, at ε = 0 only traces that are
exactly equivalent to τ will be covered, and nothing else. Algorithm 2 avoids computing
(δ0, ε)-related executions, and therefore, gains (possibly exponential) speedup.

The key subroutine in Algorithm 2 is CompTed which computes the ted by adding
one more action to the traces. It turns out that, the ted is independent of q0, but only
depends on the sequence of actions in τ . CompTed is used to compute δt from δt−1,
such that, δt is the ted for the length t prefix of ξ. Let action a be the tth action and
ξ = ξq0,τa. If a is ε-independent to τ , then the ted δt can be computed from δt−1 just
using Lemma 2. For the case where a is not ε-independent to the whole sequence τ ,
we would still want to compute a set of executions that ξq0,τa can cover. We observe
that, with appropriate computation of ted , ξq0,τa can cover all executions of the form
ξq0,φaη , where φaη is ε-equivalent to τa and a /∈ η. In what follows, we introduce this
notion of earliest equivalent position of a in τ (Definition 7), which is the basis for the
CompTed subroutine, which in turn is then used in the main reachability Algorithm 2.

5.1 Earliest equivalent position of an action in a trace

For any trace τ ∈ A∗ and action a ∈ τ , we define lastPos(τ, a) as the largest index
k such that τ(k) = a. The earliest equivalent position, eep(τ, a, ε) is the minimum of
lastPos(τ ′, a) in any τ ′ that is ε-equivalent to τa.

Definition 7. For any trace τ ∈ A∗, a ∈ A, and ε > 0, the earliest equivalent position
of a on τ is eep(τ, a, ε)

∆
= min

τ ′
ε
≡τa lastPos(τ ′, a).

For any trace τa, its ε-equivalent traces can be derived by swapping consecutive ε-
independent action pairs. Hence, the eep of a is the leftmost position it can be swapped
to, starting from the end. Any equivalent trace of τa is of the form φaη where φ and
η are the prefix and suffix of the last occurrence of action a. Hence, equivalently:
eep(τ, a, ε) = min

φaη
ε
≡τa, a/∈η len(φ). In Appendix A.1 we give a simple O(len(τ)2)

algorithm for computing eep(). If the ε-independence relation is symmetric, then it eep
can be computed in O(len(τ)) time.

Example 5. In Example 3, we showed that a0
ε∼ a1 and a0

ε∼ a2 with ε = 0.1; a⊥ is
not ε-independent to any actions. What is eep(a⊥a0a1, a2, ε)? We can swap a2 ahead
following the sequence τa2 = a⊥a0a1a2

ε≡ a⊥a1a0a2
ε≡ a⊥a1a2a0. As a⊥ and a1 are

not independent of a2, it cannot occur earlier. eep(a⊥a0a1, a2, ε) = 2.

5.2 Reachability using (δ, ε)-trace equivalent discrepancy

CompTed (Algorithm 1) takes inputs of trace τ , a new action to be added a, a parameter
r ≥ 0 such that r is a (δ0, ε)-ted for the potential execution ξq0,τ for some initial
state q0, initial set radius δ0, approximation parameter ε ≥ 0, and a set of discrepancy
functions {βa}a∈A. It returns a (δ0, ε)-ted r′ for the potential execution ξq0,τa.

Algorithm 1 CompTed(τ, a, r, ε, {βa}a∈A)
1: β ← maxb∈τa{βb}; k ← eep(τ, a, ε); t← len(τ);
2: if k = t then r′ ← βa(r) else r′ ← βa(r) + γt−k−1(ε)
3: return r′;

Lemma 3. For some initial state q0 and initial set size δ0, if r is a (δ0, ε)-ted for ξq0,τ
then value returned by CompTed() is a (δ0, ε)-ted for ξq0,τa.

Proof. Let us fix some initial state q0 and initial set size δ0.
Let ξt = ξq0,τ be the potential execution starting from q0 by taking the trace

τ , and ξt+1 = ξq0,τa. Fix any ξ′ that is (δ0, ε)-related to ξt+1. From Proposition 4,
ξ′. lstate .L = ξt+1. lstate .L. It suffice to prove that |ξ′. lstate .X − ξt+1. lstate .X| ≤
r′.

Since trace(ξ′)
ε≡ τa, action a is in the sequence trace(ξ′). Partitioning trace(ξ′)

on the last occurrence of a, we get trace(ξ′) = φaη for some φ, η ∈ A∗ with a 6∈ η.
Since k is the eep, from Definition 7, the position of the last occurrence of a on trace(ξ′)
is at least k. Hence we have len(φ) ≥ k and len(η) = t− len(φ) ≤ t−k. We construct
another potential execution ξ′′ = ξq′0,φηa with the same initial state as ξ′. The executions
ξt+1, ξ

′ and ξ′′ are illustrated in Figure 4.

Fig. 4: Potential executions ξt+1, ξ′,ξ′′

qt is the last state of the execution ξt. From the assumption, Br(qt) is an over-
approximation of the reachset at step t. We note that the length t prefix ξ′′ is (δ0, ε)-
related to ξt. Therefore, |qt.X − q′′t .X| ≤ r. Using the discrepancy function of action
a, we have

|qt+1.X − q′′t+1.X| ≤ βa(|qt.X − q′′t .X|) ≤ βa(r). (6)

We will quantify the distance between ξ′ and ξ′′. There are two cases:
(i) If k = t then, len(η) ≤ t − k = 0, that is, η is an empty string. Hence, ξ′ and ξ′′

are indeed identical and q′t+1 = q′′t+1. Thus from (6), |qt+1.X − q′t+1.X| = |qt+1.X −
q′′t+1.X| ≤ βa(r), and the lemma holds. (ii) Otherwise k < t and from Lemma 1, we
can bound the distance between ξ′ and ξ′′ as |q′t+1.X − q′′t+1.X| ≤ γlen(η)−1(ε) ≤
γt−k−1(ε). Combining with (6), we get |qt+1.X − q′t+1.X| ≤ |qt+1.X − q′′t+1.X| +
|q′t+1.X − q′′t+1.X| ≤ βa(r) + γt−k−1(ε). ut

Next, we present the main reachability algorithm which uses CompTed . Algo-
rithm 2 takes inputs of an initial set Θ, time horizon T , two parameters δ0, ε ≥ 0,
and a set of discrepancy functions {βa}a∈A. It returns the over-approximation of the
reach set for each time step.

The algorithm first computes a δ0-cover Q0 of the initial set Θ such that Θ ⊆
∪q0∈Q0

Bδ(q0) (Line 2). The for-loop from Line 3 to Line 14 will compute the over-
approximation of the reachset from each initial cover Reach(Bδ0(q0), t). The over-
approximation from each cover is represented as a collection 〈R0, . . . , RT 〉, where each
Rt is a set of tuples 〈τt, qt, δt〉 such that (i) the tracesRt d 1 and their ε-equivalent traces
contain the traces of all valid executions of length t, (ii) the traces inRt d 1 are mutually
non-ε-equivalent, (iii) for each tuple δt is the (δ0, ε)-ted for ξq0,τt ,

For each initial cover Bδ0(q0), R0 is initialized as the tuple of empty string, the
initial state q0 and size δ0 (Line 4). Then the reachset over-approximation is computed
recursively for each time step by checking for the maximum set of enabled actions EA
for the set of states Bδt(qt) (Line 8), and try to attach each enabled action a ∈ EA
to τt unless τta is ε-equivalent to some length t + 1 trace that is already in Rt+1 d 1.
This is where the major reduction happens using approximate partial order reduction.
If not, the (δ0, ε)-ted for ξq0,τta will be computed using CompTed , and new tuple
〈τta, qt+1, δt+1〉 will be added to Rt+1 (Line 13).

If there are k actions in total and they are mutually ε-independent, then as long as
the numbers of each action in τt and τ ′t are the same, τt

ε≡ τ ′t . Therefore, in this case,
Rt contains at most

(
t+k−1
k−1

)
tuples. Furthermore, for any length t trace τt, if all actions

in τt are mutually ε-independent, the algorithm can reduce the number of executions

explored by O(t!). Essentially, each τt ∈ Rt d 1 is a representative trace for the length
t ε-equivalence class.

Algorithm 2 Reachability algorithm to over-approximate Reach(Θ, T)

1: Input: Θ, T, ε, δ0, {βa};
2: Q0 ← δ0-cover(Θ);R← ∅
3: for q0 ∈ Q0 do
4: R0 ← {〈′′, q0, δ0〉};
5: for t = [T] do
6: RT ← ∅;
7: for each 〈τt, qt, δt〉 ∈ Rt do
8: EA← enabledactions(Bδt(qt));
9: for a ∈ EA do

10: if ∀τt+1 ∈ Rt+1 d 1,¬
(
τta

ε≡ τt+1

)
then;

11: qt+1 ← a(qt)
12: δt+1 ← CompTed(τt, a, δt, ε, {βa}a∈A)
13: Rt+1 ← Rt+1 ∪ 〈τta, qt+1, δt+1〉
14: R← R∪ 〈R0, . . . , RT 〉
15: returnR;

Theorem 1 shows that Algorithm 1 indeed computes an over-approximation for the
reachsets, and Theorem 2 states that the over-approximation can be made arbitrarily
precise by reducing the size of δ0, ε.

Theorem 1 (Soundness). SetR returned by Algorithm 2, satisfies ∀t = 0, . . . , T,

Reach(Θ, t) ⊆
⋃

Rt∈Rdt

⋃
〈τ,q,δ〉∈Rt

Bδ(q). (7)

Proof. Since∪q0∈Q0Bδ(q0) ⊇ Θ, it suffices to show that at each time step t = 0, . . . , T ,
the Rt computed in the for-loop from Line 4 to Line 13 satisfy Reach(Bδ0(q0), t) ⊆
∪〈τ,q,δ〉∈RtBδ(q). Fix any q0 ∈ Q0, we will prove by induction.

Base case: initially before any action happens, the only valid trace is the empty
string ′′ and the initial set is indeed Bδ0(q0).

Induction step: assume that at time step t < T , the union of all the traces Rt d 1
and their ε-equivalent traces contain the traces of all length t valid executions, and for
each tuple 〈τt, qt, δt〉 ∈ Rt, δt is a (δ0, ε)-ted for ξq0,τt . That is, Bδt(qt) contains the
final states of all (δ0, ε)-related executions to ξq0,τt . This is sufficient for showing that
Reach(Bδ0(q0), t) ⊆ ∪〈τ,q,δ〉∈RtBδ(q).

Since for each tuple contained in Rt, we will consider the maximum possible set
of actions enabled at Line 8 and attempts to compute the (δ0, ε)-ted for ξq0,τta. If τta
is not ε-equivalent to any of the length t + 1 traces that has already been added to
Rt+1, then Lemma 3 guarantees that the qt+1 and δt+1 computed at Line 11 and 12
satisfy that δt+1 is the (δ0, ε)-ted for ξq0,τta. Otherwise, τta is ε-equivalent to some
trace τt+1 that has already been added to Rt+1, then for any initial state q′0 that is

δ0-close to q0, ξq′0,τta and ξq0,τt+1
are (δ0, ε)-related and the final state of ξq′0,τta is

already contained in Bδt+1
(qt+1). Therefore, the union of all the traces Rt+1 d 1 and

their ε-equivalent traces contain the traces of all length t + 1 valid executions, and for
each tuple 〈τt+1, qt+1, δt+1〉 ∈ Rt+1, δt+1 is a (δ0, ε)-ted for ξq0,τt+1 , which means
Reach(Bδ0(q0), t+ 1) ⊆ ∪〈τ,q,δ〉∈Rt+1

Bδ(q). So the theorem holds. ut

Theorem 2 (Precision). For any r > 0, there exist δ0, ε > 0 such that, the reachset
over-approximationR computed by Algorithm 2 satisfies ∀t = 0, . . . , T,⋃

Rt∈Rdt

⋃
〈τ,q,δ〉∈Rt

Bδ(q) ⊆ Br(Reach(Θ, t)). (8)

Proof. From Proposition 2, for any n, γn(ε) → 0 as ε → 0. From Definition 2, for
any δt and discrepancy function β, β(δt) → 0 as δt → 0. Therefore, when Line 12
of Algorithm 2 is executed, δt+1 → 0 as δt → 0 and ε → 0. Iteratively applying
this observation leads that δt contained in any set Rt converges to zero as δ0 → 0 and
ε→ 0.

Fix arbitrary r > 0. The setR is a union of approximations for each Reach(Bδ0(q0), T).
Fix any such q0, δ0, it suffices to show that ∪〈τ,q,δ〉∈RtBδ(q) ⊆ Br(Reach(Θ, t)) for
small enough δ0 and ε. Moreover, it suffices to show that fix any 〈τt, qt, δt〉 ∈ Rt,
Bδ(qt) ⊆ Br(Reach(Θ, t)) for small enough δ0 and ε.

Since each δt is a (δ0, ε)-ted of the execution ξq0,τt and δ0, ε, there is an execution
ξ′ = ξ′q′0,τ ′

from q′0 ∈ Bδ(q0) following the trace τ ′
ε≡ τt. By the definition of reachset,

we have ξ′(t) ∈ Reach(Θ, t). On the other hand, ξ′ is (δ0, ε)-related to the potential
execution ξq0,τt , so ξ′(t) ∈ Bδt(qt). That is, Bδt(qt) and the reachset Reach(Θ, t) has
intersections at the state ξ′(t).

The radius of at each time step δt can be made arbitrarily small as δ0 and ε go to
0. We chose small enough δ0 and ε, such that the radius of Bδt(qt) is less than r/2.
Therefore, Bδt(qt) is contained in the radius r ball of the reachset Br(Reach(Θ, t)).

ut

Notice that as δ0 and ε go to 0, the Algorithm 2 actually converges to a simulation
algorithm which simulates every valid execution from a single initial state.

6 Experimental evaluation of effectiveness

We discuss the results from evaluating Algorithm 2 in three case studies. Our Python
implementation runs on a standard laptop (Intel CoreTM i7-7600 U CPU, 16G RAM).

Iterative consensus. This is an instance of Consensus (Example 1) with 3 continuous
variables and 3 actions a0, a1, a2. We want to check if the continuous states converge
to [−0.4, 0.4]3 in 3 rounds starting from a radius 0.5 ball around [2.5, 0.5,−3]. Figure 5
(Left) shows reachset over-approximation computed and projected on x[0]. The blue
and red curves give the bounds. As the figure shows, x[0] converges to [−0.4, 0.4] at
round 3; and so do x[1] and x[2] (not shown). We also simulated 100 random valid exe-
cutions (yellow curves) from the initial set and validate that indeed the over-approximation
is sound.

Recall, three actions can occur in any order in each round, i.e., 3! = 6 traces per
round, and 63 = 216 executions from a single initial state up to 3 rounds. We showed
in Example 3 that a0

ε∼ a1 and a0
ε∼ a2 with ε = 0.1. Therefore, a0a1a2

ε≡ a1a0a2
ε≡

a1a2a0 and a0a2a1
ε≡ a2a0a1

ε≡ a2a1a0, and Algorithm 2 explored only 2 (length
12) executions from a set of initial states for computing the bounds. The running time
for Algorithm 2 is 1 millisecond while exploring all valid executions from even only a
single state took 20 milliseconds.

Fig. 5: Reachset computations. The blue curves are the upper bound of the reachsets and the red curves are the lower bound
of the reachsets. Between the blue and red curves, the yellow curves are 100 random simulations of valid executions. Left:
Linear transition system. Right: Room heating system.

Platoon. Consider an N car platoon on a single lane (see Figure 7 in Appendix A.2
for the pseudocode and details). Each car can choose one of three actions at each time
step: a (accelerate), b (brake), or c (cruise). Car 0 can choose any action at each time
step; remaining cars try to keep safe distance with predecessor by choosing accelerate
(a) if the distance is more than 50, brake (b) if the distance is less than 30, and cruise
(c) otherwise.

Consider a 2-car platoon and a time horizon of T = 10. We want to verify that the
cars maintain safe separation. Reachset over-approximations projected on the position
variables are shown in Figure 6, with 100 random simulations of valid executions as
a sanity check. Car 0 has lots of choices and it’s position over-approximation diverges
(Figure 6). Car 1’s position depends on its initial relative distance with Car 0. It is also
easy to conclude from Figure 6 that two cars maintain safe relative distance for these
different initial states.

From a single initial state, in every step, Car 0 has 3 choices, and therefore there are
310 possible executions. Considering a range of initial positions for two cars, there are
infinitely many execution, and 910 (around 206 trillion) possible traces. With ε = 0.282,
Algorithm 2 explored a maximum of

(
18
8

)
= 43758 traces; the concrete number varies

for different initial sets. The running time for Algorithm 2 is 5.1 milliseconds while
exploring all valid executions from even only a single state took 2.9 seconds.

For a 4-car platoon and a time horizon of T = 10, there are 8110 possible traces
considering a range of initial positions. With ε = 0.282, Algorithm 2 explored 7986
traces to conclude that all cars maintain safe separation for the setting where all cars
are initially separated by a distance of 40 and has an initial set radius of 4. The running

time for Algorithm 2 is 62.3 milliseconds, while exploring all valid executions from
even only a single state took 6.2 seconds.

Fig. 6: Position over-approximations for 2 cars. The blue curves are the upper bound of the reachsets and the red curves are
the lower bound of the reachsets. Between the blue and red curves, the yellow curves are 100 random simulations of valid
executions. Car1’s initial position is in the range [0, 5], Car2’s initial position is 60 (Left), 40 (Center) and 25 (Right).

Building heating system. Consider a building with N rooms, each with a heater (see
Appendix A.2 for pseudocode and details). For i ∈ [N], x[i] ∈ R is the temperature of
room i andm[i] ∈ {0, 1} captures the off/on state of it’s heater. The controller measures
the temperature of rooms periodically; based on these measurements (y[i]) heaters turn
on or off. These decisions are made asynchronously across rooms in arbitrary order. The
room temperature x[i] changes linearly according to the heater input m[i], the thermal
capacity of the room, and the thermal coupling across adjacent rooms as given in the
benchmark problem of [17]. For i ∈ [N], actions oni, offi capture the decision making
process of room i on whether or not to turn on the heater. Time elapse is captured by a
flow action that updates the temperatures. We want to verify that the room temperatures
remain in the [60, 79] range.

Consider a building with N = 3 rooms. In Appendix A.2, we provide computation
details to show that for any i, j ∈ [3] with i 6= j, a ∈ {oni, offi} and b ∈ {onj , offj},
a

ε∼ b with ε = 0.6; but, flow is not independent with any other actions. Computed
reachset over-approximation for 8 rounds and projected on the temperature of Room 0
is shown in Figure 5 (Right). Indeed, temperature of Room 0 is contained within the
range.

For a round, where each room makes a decision once in arbitrary order, there are
3! = 6 ε-equivalent action sequences. Therefore, from a single initial state, there are 68

(1.6 million) valid executions. Algorithm 2, in this case explore only one (length 32)
execution with ε = 0.6 to approximate all executions starting from an initial set with
radius δ = 2. The running time for Algorithm 2 is 1 millisecond while exploring all
valid executions from even only a single state took 434 seconds.

7 Conclusion

We proposed a partial order reduction technique for reachability analysis of infinite
state transition systems that exploits approximate independence and bounded sensitiv-
ity of actions to reduce the number of executions explored. This relies on a novel notion

of ε-independence that generalizes the traditional notion of independence by allowing
approximate commutation of actions. With this ε-independence relation, we have de-
veloped an algorithm for soundly over-approximating reachsets of all executions using
only ε-equivalent traces. The over-approximation can also be made arbitrarily precise
by reducing the size of δ, ε. In experimental evaluation with three case studies we ob-
serve that it can reduce the number of executions explored exponentially compared to
explicit computation of all executions.

The results suggest several future research directions. In Definition 3, ε-independent
actions are required to be approximately commutative globally. For reachability analy-
sis, this definition could be relaxed to actions that approximately commute locally over
parts of the state space. An orthogonal direction is to apply this reduction technique to
verify temporal logic properties and extend it to hybrid models.

References

1. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order reduction.
In: ACM SIGPLAN Notices. vol. 49, pp. 373–384. ACM (2014)

2. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-order reduc-
tion in symbolic state space exploration. In: International Conference on Computer Aided
Verification. pp. 340–351. Springer (1997)

3. Baier, C., Größer, M., Ciesinski, F.: Partial order reduction for probabilistic systems. In:
QEST. vol. 4, pp. 230–239 (2004)

4. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of model checking. MIT press (2008)
5. Blondel, V., Hendrickx, J.M., Olshevsky, A., Tsitsiklis, J., et al.: Convergence in multia-

gent coordination, consensus, and flocking. In: IEEE Conference on Decision and Control.
vol. 44, p. 2996. IEEE; 1998 (2005)

6. Cassez, F., Ziegler, F.: Verification of concurrent programs using trace abstraction refinement.
In: Logic for Programming, Artificial Intelligence, and Reasoning. pp. 233–248. Springer
(2015)

7. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and robustness of programs. Com-
munications of the ACM 55(8), 107–115 (2012)

8. Clarke, E., Jha, S., Marrero, W.: Partial order reductions for security protocol verification.
In: International Conference on Tools and Algorithms for the Construction and Analysis of
Systems. pp. 503–518. Springer (2000)

9. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State space reduction using partial order
techniques. International Journal on Software Tools for Technology Transfer 2(3), 279–287
(1999)

10. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT press (1999)
11. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In:

Computer Aided Verification (CAV) (2010)
12. Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Hybrid Systems:

Computation and Control, pp. 174–189. Springer (2007)
13. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from execu-

tions. In: EMSOFT (2013)
14. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: A verification tool for state-

flow models. In: Tools and Algorithms for the Construction and Analysis of Systems. Lecture
Notes in Computer Science, vol. 9035, pp. 68–82. Springer Berlin Heidelberg (2015)

15. Fan, C., Mitra, S.: Bounded verification with on-the-fly discrepancy computation. In: Inter-
national Symposium on Automated Technology for Verification and Analysis. pp. 446–463.
Springer (2015)

16. Fang, L., Antsaklis, P.J.: Information consensus of asynchronous discrete-time multi-agent
systems. In: Proceedings of the 2005, American Control Conference, 2005. pp. 1883–1888.
IEEE (2005)

17. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: International Work-
shop on Hybrid Systems: Computation and Control. pp. 326–341. Springer (2004)

18. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software.
In: ACM Sigplan Notices. vol. 40, pp. 110–121. ACM (2005)

19. Godefroid, P., van Leeuwen, J., Hartmanis, J., Goos, G., Wolper, P.: Partial-order methods
for the verification of concurrent systems: an approach to the state-explosion problem, vol.
1032. Springer Heidelberg (1996)

20. Huang, Z., Fan, C., Mereacre, A., Mitra, S., Kwiatkowska, M.: Simulation-based verification
of cardiac pacemakers with guaranteed coverage. IEEE Design & Test 32(5), 27–34 (Oct
2015)

21. Huang, Z., Mitra, S.: Proofs from simulations and modular annotations. In: Proceedings of
the 17th international conference on Hybrid systems: computation and control. pp. 183–192.
ACM (2014)

22. Kurshan, R., Levin, V., Minea, M., Peled, D., Yenigün, H.: Static partial order reduction.
In: International Conference on Tools and Algorithms for the Construction and Analysis of
Systems. pp. 345–357. Springer (1998)

23. Majumdar, R., Saha, I.: Symbolic robustness analysis. In: Real-Time Systems Symposium,
2009, RTSS 2009. 30th IEEE. pp. 355–363. IEEE (2009)

24. Mitra, D.: An asynchronous distributed algorithm for power control in cellular radio systems.
In: Wireless and Mobile Communications, pp. 177–186. Springer (1994)

25. Mitra, S., Chandy, K.M.: A formalized theory for verifying stability and convergence of
automata in pvs. In: International Conference on Theorem Proving in Higher Order Logics.
pp. 230–245. Springer (2008)

26. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-
agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)

27. Peled, D.: Ten years of partial order reduction. In: International Conference on Computer
Aided Verification. pp. 17–28. Springer (1998)

28. Rhee, I.K., Lee, J., Kim, J., Serpedin, E., Wu, Y.C.: Clock synchronization in wireless sensor
networks: An overview. Sensors 9(1), 56–85 (2009)

29. Samanta, R., Deshmukh, J.V., Chaudhuri, S.: Robustness analysis of networked systems. In:
International Workshop on Verification, Model Checking, and Abstract Interpretation. pp.
229–247. Springer (2013)

30. Welch, J.L., Lynch, N.: A new fault-tolerant algorithm for clock synchronization. Informa-
tion and computation 77(1), 1–36 (1988)

31. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: Efficient stateful dynamic partial order
reduction. In: International SPIN Workshop on Model Checking of Software. pp. 288–305.
Springer (2008)

A Appendix

A.1 Algorithm to compute the earliest equivalent point

In the following algorithm, we find the earliest equivalent point eep of action a on an
action sequence τ . For any trace τ and action a, eep(τ, a, ε) constructs a trace φ ∈ A∗.

Initially φ is set to be the empty sequence. Iteratively, from the end of τ , we add action
τ(t) to φ if it is not independent to the entire trace φa. We will prove that, length of φ
gives the eep of action a on trace τ . The time complexity of the algorithm is at most
O(n2), where n is the length of trace τ .

Algorithm 3 eep(τ, a, ε)

1: φ← 〈〉;
2: T ← len(τ);
3: for t = T − 1 : 0 do
4: if ∃b ∈ φa, τ(t) 6 ε∼ b then
5: φ← τ(t)φ;
6: return len(φ);

Lemma 4. For any action a ∈ A and trace τ ∈ A∗, the function eep(τ, a, ε) computes
the eep of a on τ .

Proof. For a trace τ and an action a, algorithm eep(τ, a, ε) constructs a trace φ and
returns its length. To prove that len(φ) gives the eep k of a on τ , we show both len(φ) ≥
k and len(φ) ≤ k.
len(φ) ≥ k: It suffice to prove the statement by constructing a trace η such that
φaη

ε≡ τa and a /∈ η. Let η = τ\φ be the remaining subsequence of τ after removing
the actions in φ. We note that the ordering of actions in η is the same as that in τ .
For each action c ∈ η, line 5 is not executed. Hence, for all actions b ∈ φa which is
originally to the right of c, we have b ε∼ c. Therefore, action c can be swapped repeatedly
to the right of action a. Repeat this process for all actions in η, we derive trace φaη from
the original trace τa. Therefore φaη

ε≡ τa. In addition, we note that from Definition 3,
an ε-independent action pair consists of two distinctive actions, which implies a 6 ε∼ a.
Hence, for each occurrence a ∈ τ , line 5 is not executed, that is, a /∈ η. Therefore, the
statement holds.
len(φ) ≤ k: First, we convert any trace τa to a trace consists of only distinctive
actions. If otherwise some action b ∈ τa occurs more than once, we replace the oc-
currences as distinctive pseudo-actions b0, b1, . . . , such that each bi inherit the same
independence relation from b and any pair of these pseudo-actions is not independent.
In this way, we map an arbitrary trace τa to a trace consists of only distinctive actions.
It can be checked that this mapping is bijective. Without loss of generality, we assume
that the actions in τa are distinctive.
We prove len(φ) ≤ k by contradiction. Suppose len(φ) > k, then there exist traces
φ′, η′ such that (i) a /∈ η′, (ii) φ′aη′

ε≡ τa, and (iii) len(φ′) < len(φ). From (iii), there
exists an action c ∈ φ\φ′. If there are multiple choices of such actions, we choose the
rightmost action c in φ. From line 4 and 5, action c is in φ iff there exists another action
b ∈ φ to the right of c such that c 6 ε∼ b. Since we choose action c as the rightmost action
in φ that is not in φ′, we have b ∈ φ′. Originally in trace τa, action b is to the right of
action c. As actions b and c are not ε-independent, in any equivalent trace φ′aη′

ε≡ τa,

the relative position of them should not be changed. Hence in trace φ′aη′, action b is
also to the right of action c. However, since b ∈ φ′ and c /∈ φ′, we have action c is to
the right of action b in trace φ′aη′. We derive a contradiction. Therefore, if the actions
in τa are distinctive, len(φ) ≤ k.

A.2 Complete description of the examples

Platoon. Consider an N car platoon on a single lane road (see Figure 7). Each car can
choose one of three actions at each time step: a (accelerate), b (brake), or c (cruise). Car
0 can choose any action at each time step; remaining cars try to keep safe distance with
predecessor by choosing accelerate (a) if the distance is more than 50, brake (b) if the
distance is less than 30, and cruise (c) otherwise. For each i ∈ [N], x[2i] is the position,
x[2i+ 1] is the velocity, and m[i] is the chosen action, of the ith car. At each step, m[i]
is updated using relative positions according to the rule described above, and then x is
updated according to the actions. For concreteness, the linear state transition equation
for a 2-car platoon is shown below:

automaton CarPlatoon(N : Nat)
2 variables

x : Real2N ;
4 m : {c, a, b}N ;

6 initially
for each i ∈ [N]

8 m[i] := choose {c, a, b};

1transitions
move

3pre true
eff m[0] := choose {c, a, b};

5for each i ∈ [N] \ 0

m[i] :=

a if x[2(i− 1)]− x[2i] > 50

b if x[2(i− 1)]− x[2i] < 30

c else

;

7x := Ax+ bm;

Fig. 7: Labeled transition system model of cars keeping a platoon.

x←

1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1

x+

acc0(∆t)

2

2

acc0∆t
acc1(∆t)

2

2

acc1∆t

 = Ax+ bm, (9)

where acci > 0 if car i accelerates; acci < 0 if it brakes; and acci = 0 if it cruises. For
any value of m, the discrepancy function for the corresponding actions are the same:
For any q, q′ with q.L = q′.L, βa(|q.x−q′.x|) = |A||q.x−q′.x|. For any i, j ∈ [9] with
i 6= j, we notice that |aiaj(q).x− ajai(q).x| = |Abmi −Abmj + bmj − bmi | which is
a constant number and can be used as ε. If we choose ∆t = 0.1, then the discrepancy
function could be βa(|q.x−q′.x|2) = 1.06|q.x−q′.x|2. Furthermore, if acci can choose
from {−10, 0}, or from {10, 0}, then the corresponding actions are ε-independent with
ε = 0.141, and if acci can choose from {−10, 0, 10}, then the corresponding actions
are ε-independent with ε = 0.282.

Room heating problem We present a building heating system in Fig. 8. The building
has N rooms each with a heater. For i ∈ [N], x[i] ∈ R is the temperature of room i and
m[i] ∈ {0, 1} captures the off/on state of the heater in the room. The building measures
the temperature of rooms periodically every T seconds and save the measurements to
y[i]. Based on the measurement y[i], each room takes action ai to decide whether to
turn on or turn off its heater. The boolean variable d[i] indicates whether room i has
made a decision. These decisions are made asynchronously among the rooms with a
small delay h. For this system, we want to check whether the temperature of the room
remains in an appropriate range.

1 automaton Roomheating(N : Nat)
variables

3 x : RealN initially x[i] := 60;
y : RealN initially y[i] := 60;

5 d : BoolN initially d := f alseN ;
m : BoolN initiallym := f alseN ;

7

transitions
9 oni, for i ∈ [N]

pre !d[i] ∧ y[i] <= 72
11 eff x := Whx+ bh + Chm;

d[i] := true ∧m[i] := true;

2offi, for i ∈ [N]
pre !d[i] ∧ y[i] >= 68

4eff x := Whx+ bh + Chm;
d[i] := true ∧m[i] := f alse;

6

8flow
pre ∧i∈[N]di

10eff x := WT x+ bT + CTm;
d[i] := f alse for each i ∈ [N];

12y := x;

Fig. 8: Transition system of room heating.

For i ∈ [N], actions oni, off i capture the decision making process of room i on
whether or not to turn on the heater. During the process, time elapses for a (short)
period h, which leads to an update of the temperature as an affine function of current
temperature x and the heaters state m. The affine function is derived from the thermal
equations presented in [17]. In this section, we use an instance of the system with the
following matrices:

Wh =

0.96 0.01 0.01

0.02 0.97 0.01

0 0.01 0.97

 , bh =

1.2

0

1.2

 , Ch =

0.4 0 0

0 0 0

0 0 0.4

 . (10)

After a room controller makes a decision (oni or off i transition occurs), the variable
d[i] to true. After all rooms make their decisions, action flow captures the time elapse
for a (longer) period T which also updates the measured values y. We use an instance
of this step with the following matrices:

WT =

0.18 0.11 0.14

0.18 0.25 0.17

0.09 0.13 0.28

 , bT =

34.2

24

30

 , CT =

11.4 0 0

0 8 0

0 0 10

 . (11)

For each i ∈ [N] and ai ∈ {oni, off i}, we will derive the discrepancy function for
action a. For any q, q′ with q.L = q′.L,

|ai(q).x− ai(q′).x|
= |Whq.x+ bh + Chq.m−Whq

′.x− bh − Chq′.m|
≤ |Wh||q.x− q′.x|

We note that |Wh|2 = 0.99. Hence, we can define βa(|q.x−q′.x|2) = 0.99|q.x−q′.x|2
as the discrepancy functions of each a ∈ {oni, off i}i∈[3]. Similarly, we derived that
βflow(|q.x− q′.x|2) = 0.52|q.x− q′.x|2.

For any i, j ∈ [3] with i 6= j, ai ∈ {oni, off i} and aj ∈ {onj , off j}, we can prove
ai

ε∼ aj with ε = 0.6. Notice that, ai(q).x = Whq.x + bh + Chq.m = aj(q).x are
identical, but ai(q).m and aj(q).m could be different.

|aiaj(q).x− ajai(q).x|
= |Whaj(q).x+ bh + Chaj(q).m−Whai(q).x− bh − Chai(q).m|
= |Chaj(q).m− Chai(q).m| ≤ |Ch||aj(q).m− ai(q).m|

We note that |Ch|2 = 0.4. We will give an upper bound on |aj(q).m−ai(q).m|. Notice
that ai(q).m and q.m can only differ in one bit (mi). Similarly, aj(q).m and q.m can
only differ in one bit (mj). Hence ai(q).m and aj(q).m can be differ in at most two
bits, and |ai(q).m− aj(q).m|2 ≤ |[1, 1, 0]|2 = 1.41. Therefore,

|aiaj(q).x− ajai(q).x|2 ≤ 0.4 ∗ 1.41 ≤ 0.6.

Thus for any pair of rooms, the on/off decisions are ε-approximately independent with
ε = 0.6. For a round, where each room makes a decision once in arbitrary order, there
are in total 3! = 6 ε-equivalent action sequences.

	Approximate Partial Order Reduction

