Skip to main content

Framework for Augmented Reality Scenarios in Engineering Education

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 47))

Abstract

The goal of the presented approach is to show a method suitable for better integration of real-time sensor data into practical education, without leaving the students to sort out the digital content by themselves. The authors want to empower teachers on-site to show their students relevant sensory data, effectively controlling the content the students can use and explore themselves. The students are enabled to find individual approaches towards the learning scenario, take different perspectives of the plant into account and try several virtual steps before the experiment is undertaken by themselves. The two main functions of the presented framework are the authoring of augmented reality content and controlling the augmented reality content of the student’s smart devices via the teacher’s master view. The authors created a simple setup phase, which is usable on-site, utilizing only one device in the master view mode. For students, the usage is even simpler, as their content is controlled via the master view. The framework technically supports an unlimited number of student clients to be controlled by one teacher view. The functionality has been established and validated with two experimental setups, both situated within the context of chemical engineering education.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vogel-Heuser, B., Bauernhansl, T., Hompel, M.T. (eds.): Handbuch Industrie 4.0 Bd.2: Automatisierung, 2. Aufl. 2017. Springer Reference Technik. Springer, Berlin, Heidelberg, s.l. (2017)

    Google Scholar 

  2. Vogel-Heuser, B., Bauernhansl, T., Hompel, M. (eds.): Handbuch Industrie 4.0 Bd.4: Allgemeine Grundlagen, 2nd edn. Springer Reference Technik. Springer, Berlin, Heidelberg, s.l (2017)

    Google Scholar 

  3. Plattform Industrie 4.0, ZVEI - Zentralverband Elektrotechnik- und Elektronikindustrie e.V. (2017). Industrie 4.0 Plug-and-Produce for Adaptable Factories: Example Use Case Definition, Models, and Implementation

    Google Scholar 

  4. DIN Deutsches Institut für Normung e.V. Referenzarchitekturmodell Industrie 4.0 (RAMI4.0) (DIN SPEC 91345:2016-04) (2016). https://www.beuth.de/de/technische-regel/din-spec-91345/250940128. Accessed 09 Oct 2017

  5. Acatech – Deutsche Akademie der technikwissenschaften (ed.) Kompetenzen für Industrie 4.0: Qualifizierungsbedarfe und Lösungsansätze. acatech POSITION. Herbert Utz Verlag GmbH, München (2016)

    Google Scholar 

  6. Azuma, R.T.: A survey of augmented reality. Presence Teleoperators Virtual Environ. 6(4), 355–385 (1997). https://doi.org/10.1162/pres.1997.6.4.355

    Article  Google Scholar 

  7. Schlick, C.M., Jeske, T., Mütze-Niewöhner, S.: Unterstützung von Lernprozessen bei Montageaufgaben. In: Schlick, C.M., Moser, K., Schenk, M. (eds.) Flexible Produktionskapazität Innovativ Managen: Handlungsempfehlungen für die Flexible Gestaltung von Produktionssystemen in Kleinen und Mittleren Unternehmen. Springer Vieweg, Berlin (2014)

    Google Scholar 

  8. Dini, G., Mura, M.D.: Application of augmented reality techniques in through-life engineering services. Procedia CIRP 38, 14–23 (2015). https://doi.org/10.1016/j.procir.2015.07.044

    Article  Google Scholar 

  9. Jeřábek, T., Rambousek, V., Wildová, R.: Specifics of visual perception of the augmented reality in the context of education. Procedia Soc. Behav. Sci. 159, 598–604 (2014). https://doi.org/10.1016/j.sbspro.2014.12.432

    Article  Google Scholar 

  10. Frerich, S., Heinz, E., Müller, K.: RUB-Ingenieurwissenschaften expandieren in die virtuelle Lernwelt. In: Frerich, S., Meisen, T., Richert, A., et al. (eds.) Engineering Education 4.0, pp. 25–29. Springer International Publishing, Cham (2016)

    Google Scholar 

  11. Frerich, S., Kruse, D., Petermann, M., et al.: Virtual labs and remote labs: practical experience for everyone. In: 2014 IEEE Global Engineering Education Conference (EDUCON). IEEE, pp. 312–314 (2014)

    Google Scholar 

  12. Kruse, D., Frerich, S., Petermann, M., et al.: Remote labs in ELLI: lab experience for every student with two different approaches. In: 2016 IEEE Global Engineering Education Conference (EDUCON), pp. 469–475. IEEE (2016)

    Google Scholar 

  13. Kruse, D., Kuska, R., Frerich, S., et al.: More than “did you read the script?”. In: Auer, M.E., Zutin, D.G. (eds.) Online Engineering & Internet of Things, vol. 22, pp. 160–169. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  14. Akçayır, M., Akçayır, G.: Advantages and challenges associated with augmented reality for education: a systematic review of the literature. Educ. Res. Rev. 20, 1–11 (2017). https://doi.org/10.1016/j.edurev.2016.11.002

    Article  Google Scholar 

  15. Petrolo, R., Loscri, V., Mitton, N.: Cyber-physical objects as key elements for a smart cyber-city. In: Guerrieri, A., Loscri, V., Rovella, A., et al. (eds.) Management of Cyber Physical Objects in the Future Internet of Things Methods Architectures and Applications, 1st edn., pp. 31–50. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  16. Souza-Concilio, I.A., Pacheco, B.A.: The development of augmented reality systems in informatics higher education. Procedia Comput. Sci. 25, 179–188 (2013). https://doi.org/10.1016/j.procs.2013.11.022

    Article  Google Scholar 

  17. Martín-Gutiérrez, J., Fabiani, P., Benesova, W., et al.: Augmented reality to promote collaborative and autonomous learning in higher education. Comput. Hum. Behav. 51, 752–761 (2015). https://doi.org/10.1016/j.chb.2014.11.093

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Simon Schröder for his contributions regarding the implementation of the augmented reality application shown in the validation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Neges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neges, M., Wolf, M., Kuska, R., Frerich, S. (2019). Framework for Augmented Reality Scenarios in Engineering Education. In: Auer, M., Langmann, R. (eds) Smart Industry & Smart Education. REV 2018. Lecture Notes in Networks and Systems, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-95678-7_68

Download citation

Publish with us

Policies and ethics