Skip to main content

Bayesian Probit Model with \( \varvec{L}^{\varvec{\alpha}} \) and Elastic Net Regularization

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10954))

Included in the following conference series:

  • 2834 Accesses

Abstract

Most of the classification and regression models are established from the frequentist perspective. For certain models, the corresponding Bayesian versions have been developed. However, the Bayesian analysis of classification models has been rarely investigated yet, especially for penalized classification models. In this paper, we propose two probit models respectively with \( L^{\alpha } \) regularization and elastic net regularization from a Bayesian perspective. It is demonstrated by the experiments on a real-world dataset that the proposed probit models can have certain advantages over the frequentist models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics, vol. 1. Springer, New York (2001)

    MATH  Google Scholar 

  2. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  Google Scholar 

  3. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  Google Scholar 

  5. Frank, I.E., Friedman, J.H.: A statistical view of some chemometrics regression tools. Technometrics 35(2), 109–135 (1993)

    Article  Google Scholar 

  6. Huang, J., Horowitz, J.L., Ma, S.: Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann. Stat. 36, 587–613 (2008)

    Article  MathSciNet  Google Scholar 

  7. Zou, H., Li, R.: One-step sparse estimates in nonconcave penalized likelihood models. Ann. Stat. 36(4), 1509 (2008)

    Article  MathSciNet  Google Scholar 

  8. Polson, N.G., Scott, S.L., et al.: Data augmentation for support vector machines. Bayesian Anal. 6(1), 1–23 (2011)

    Article  MathSciNet  Google Scholar 

  9. Park, T., Casella, G.: The Bayesian Lasso. J. Am. Stat. Assoc. 103(482), 681–686 (2008)

    Article  MathSciNet  Google Scholar 

  10. Li, Q., Lin, N., et al.: The Bayesian elastic net. Bayesian Anal. 5(1), 151–170 (2010)

    Article  MathSciNet  Google Scholar 

  11. Polson, N.G., Scott, J.G., Windle, J.: The Bayesian bridge. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 76(4), 713–733 (2014)

    Article  MathSciNet  Google Scholar 

  12. Liang, Y., Liu, C., Luan, X.-Z., Leung, K.-S., Chan, T.-M., Xu, Z.B., Zhang, H.: Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification. BMC Bioinform. 14, 198 (2013)

    Article  Google Scholar 

  13. Xu, Z., Chang, X., Xu, F., Zhang, H.: L1/2 regularization: a thresholding representation theory and a fast solver. IEEE Trans. Neural Netw. Learn. Syst. 23(7), 1013–1027 (2012)

    Article  Google Scholar 

  14. Cawley, G.C., Talbot, N.L.C.: Gene selection in cancer classification using sparse logistic regression with Bayesian regularization. Bioinformatics 22(19), 2348–2355 (2006)

    Article  Google Scholar 

  15. Bae, K., Mallick, B.K.: Gene selection using a two-level hierarchical Bayesian model. Bioinformatics 20(18), 3423–3430 (2004)

    Article  Google Scholar 

  16. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  Google Scholar 

  17. Albert, J.H., Chib, S.: Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 88(422), 669–679 (1993)

    Article  MathSciNet  Google Scholar 

  18. Rodriguez-Yam, G., Davis, R.A., Scharf, L.L.: Efficient gibbs sampling of truncated multivariate normal with application to constrained linear regression. Unpublished manuscript (2004)

    Google Scholar 

  19. Chang, S.-M., Chen, R.-B., Chi, Y.: Bayesian variable selections for probit models with componentwise gibbs samplers. Commun. Stat. Simul. Comput. 45(8), 2752–2766 (2016)

    Article  MathSciNet  Google Scholar 

  20. West, M.: On scale mixtures of normal distributions. Biometrika 74(3), 646–648 (1987)

    Article  MathSciNet  Google Scholar 

  21. Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwen Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, T., Ma, J. (2018). Bayesian Probit Model with \( \varvec{L}^{\varvec{\alpha}} \) and Elastic Net Regularization. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10954. Springer, Cham. https://doi.org/10.1007/978-3-319-95930-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95930-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95929-0

  • Online ISBN: 978-3-319-95930-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics