Skip to main content

MiRNN: An Improved Prediction Model of MicroRNA Precursors Using Gated Recurrent Units

  • Conference paper
  • First Online:
  • 2218 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10955))

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that derived from hairpin-forming miRNA precursors (pre-miRNAs) and regulating gene expression at the post-transcriptional level. Many sophisticated computational tools have been developed for miRNA prediction. However, all these existing approaches for predicting miRNA require large amounts of task-specific knowledge in the form of handcrafted features and data pre-processing. In this article, we introduce MiRNN (MiRNN is available at https://github.com/CadenC/MiRNN), a novel computational predictor based on bidirectional gated recurrent units (GRUs). Our system is truly end-to-end, requiring no feature engineering or data preprocessing, thus making it applicable to a wide range of sequence classification tasks. Its main purpose is to omit the procedure of feature extraction and to provide accurate prediction by using the high-level features extracted from the bidirectional recurrent neural network. The experimental results show that MiRNN can produce state-of-the-art performance on pre-miRNA prediction task. The overall prediction accuracy of our model on miRBase data sets is 93.70%. In addition, we trained our model on various clade specific dataset and obtained increased accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ambros, V.: A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell 57(1), 49–57 (1989)

    Article  Google Scholar 

  2. Ruvkun, G.: Glimpses of a tiny RNA world. Science 294(5543), 797–799 (2001)

    Article  Google Scholar 

  3. Witkos, T.M., Koscianska, E., Krzyzosiak, W.J.: Practical aspects of microRNA target prediction. Curr. Mol. Med. 11(2), 93–109 (2011)

    Article  Google Scholar 

  4. Lim, L.P., Lau, N.C., Garrett-Engele, P., et al.: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027), 769 (2005)

    Article  Google Scholar 

  5. Carrington, J.C., Ambros, V.: Role of microRNAs in plant and animal development. Science 301(5631), 336–338 (2003)

    Article  Google Scholar 

  6. Suh, M.R., Lee, Y., Kim, J.Y., et al.: Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 270(2), 488–498 (2004)

    Article  Google Scholar 

  7. Williams, A.H., Liu, N., Van Rooij, E., Olson, E.N.: Microrna control of muscle development and disease. Curr. Opin. Cell Biol. 21(3), 461–469 (2009)

    Article  Google Scholar 

  8. Chen, J.F., Mandel, E.M., Thomson, J.M., et al.: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38(2), 228 (2006)

    Article  Google Scholar 

  9. Shivdasani, R.A.: MicroRNAs: regulators of gene expression and cell differentiation. Blood 108(12), 3646–3653 (2006)

    Article  Google Scholar 

  10. Ambros, V.: The functions of animal microRNAs. Nature 431(7006), 350 (2004)

    Article  Google Scholar 

  11. Brennecke, J., Hipfner, D.R., Stark, A., et al.: bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113(1), 25–36 (2003)

    Article  Google Scholar 

  12. Poy, M.N., Eliasson, L., Krutzfeldt, J., et al.: A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432(7014), 226 (2004)

    Article  Google Scholar 

  13. Wilfred, B.R., Wang, W.X., Nelson, P.T.: Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol. Genet. Metab. 91(3), 209–217 (2007)

    Article  Google Scholar 

  14. Fujii, H., Chiou, T.J., Lin, S.I., et al.: A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15(22), 2038–2043 (2005)

    Article  Google Scholar 

  15. Guy, C.L.: Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu. Rev. Plant Biol. 41(1), 187–223 (1990)

    Article  Google Scholar 

  16. Pfeffer, S., Zavolan, M., Grässer, F.A., et al.: Identification of virus-encoded microRNAs. Science 304(5671), 734–736 (2004)

    Article  Google Scholar 

  17. Nelson, J.A.: Small RNAs and large DNA viruses. N. Engl. J. Med. 357(25), 2630–2632 (2007)

    Article  Google Scholar 

  18. Leclercq, M., Diallo, A.B., Blanchette, M.: Computational prediction of the localization of microRNAs within their pre-miRNA. Nucleic Acids Res. 41(15), 7200–7211 (2013)

    Article  Google Scholar 

  19. Park, S., Min, S., Choi, H., et al.: deepMiRGene: deep neural network based precursor microRNA prediction. arXiv preprint arXiv:1605.00017 (2016)

  20. S, G.J.: miRBase. http://www.mirbase.org/

  21. Batuwita, R., Palade, V.: microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 25(8), 989–995 (2009)

    Article  Google Scholar 

  22. Xuan, P., Guo, M., Liu, X., et al.: PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. Bioinformatics 27(10), 1368–1376 (2011)

    Article  Google Scholar 

  23. Fujita, P.A., Rhead, B., Zweig, A.S., et al.: The UCSC genome browser database: update 2011. Nucleic Acids Res. 39(suppl_1), D876–D882 (2010)

    Google Scholar 

  24. Hinton, G.E., Srivastava, N., Krizhevsky, A., et al.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dancheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, M., Li, D., Lin, Z., Niu, C., Ding, C. (2018). MiRNN: An Improved Prediction Model of MicroRNA Precursors Using Gated Recurrent Units. In: Huang, DS., Jo, KH., Zhang, XL. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10955. Springer, Cham. https://doi.org/10.1007/978-3-319-95933-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95933-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95932-0

  • Online ISBN: 978-3-319-95933-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics