Skip to main content

Emotion Recognition Based on Electroencephalogram Using a Multiple Instance Learning Framework

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10955))

Included in the following conference series:

Abstract

Electroencephalogram (EEG)-based emotion recognition has been widely researched in the field of affective computing. Nevertheless, EEG signals which reflect brain activity are always unstable, it is inappropriate for traditional analysis methods to treat each sliding time window of signals as independent sample during classification. In this study, we employ a multi-instance learning (MIL) framework for EEG-based emotion recognition and regard sliding time windows from the same EEG signal as a whole by learning two MIL models based on Citation-kNN and mi-SVM algorithms. Experiment results show that our methods can achieve higher classification accuracy of 74.21% and 77.50% on two affective dimensions (valence and arousal) respectively when comparing with traditional single-instance classification algorithms. We believe that MIL framework can improve the generalization performance of EEG-based emotion recognition further, and provide new inspiration for affective computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Picard, R.W.: Affective Computing, vol. 1, 1st edn, pp. 71–73. IGI Global, Hershey (1997)

    Google Scholar 

  2. Calvo, R.A., D’Mello, S.: Affect detection: an interdisciplinary review of models, methods, and their applications. IEEE Trans. Affect. Comput. 1(1), 18–37 (2010)

    Article  Google Scholar 

  3. Tkalčič, M., Burnik, U., Košir, A.: Using affective parameters in a content-based recommender system for images. User Model. User-Adapt. Interact. 20(4), 279–311 (2010)

    Article  Google Scholar 

  4. Anderson, K., Mcowan, P.W.: A real-time automated system for the recognition of human facial expressions. IEEE Trans. Syst. Man Cybern. Part B Cybern. Publ. IEEE Syst. Man Cybern. Soc. 36(1), 96–105 (2006)

    Article  Google Scholar 

  5. van der Wal, C.N., Kowalczyk, W.: Detecting changing emotions in human speech by machine and humans. Appl. Intell. 39(4), 675–691 (2013)

    Article  Google Scholar 

  6. Wagner, J., Kim, N.J., Andre, E.: From physiological signals to emotions: implementing and comparing selected methods for feature extraction and classification. In: IEEE International Conference on Multimedia and Expo, pp. 940–943. IEEE (2005)

    Google Scholar 

  7. Mao, C., et al.: EEG-based biometric identification using local probability centers. In: International Joint Conference on Neural Networks, pp. 1–8. IEEE (2015)

    Google Scholar 

  8. Chen, J., et al.: Feature-level fusion of multimodal physiological signals for emotion recognition. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 395–399. IEEE (2015)

    Google Scholar 

  9. Paus, T., Sipila, P.K., Strafella, A.P.: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J. Neurophysiol. 86(4), 1983–1990 (2001)

    Article  Google Scholar 

  10. Chanel, G., et al.: Short-term emotion assessment in a recall paradigm. Int. J. Hum Comput Stud. 67(8), 607–627 (2009)

    Article  Google Scholar 

  11. Kaplan, A.Y., et al.: Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges. Signal Process. 85(11), 2190–2212 (2005)

    Article  Google Scholar 

  12. Sanei, S., Chambers, J.A.: EEG signal processing. In: The Fernow Watershed Acidification Study, pp. 207–236. Springer, Netherlands (2013)

    Google Scholar 

  13. Sadatnejad, K., et al.: EEG Representation Using Multi-instance Framework on The Manifold of Symmetric Positive Definite Matrices for EEG-based Computer Aided Diagnosis (2017)

    Google Scholar 

  14. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1–2), 31–71 (1997)

    Article  Google Scholar 

  15. Kandemir, M., Hamprecht, F.A.: Computer-aided diagnosis from weak supervision: a benchmarking study. Comput. Med. Imaging Graph. 42, 44–50 (2015)

    Article  Google Scholar 

  16. Huo, J., Gao, Y., Yang, W., Yin, H.: Abnormal event detection via multi-instance dictionary learning. In: Yin, H., Costa, J.A.F., Barreto, G. (eds.) IDEAL 2012. LNCS, vol. 7435, pp. 76–83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32639-4_10

    Chapter  Google Scholar 

  17. Fang, Y., Chang, L.: Multi-instance feature learning based on sparse representation for facial expression recognition. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015. LNCS, vol. 8935, pp. 224–233. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14445-0_20

    Chapter  Google Scholar 

  18. Lee, C.-C., et al.: Affective state recognition in married couples’ interactions using PCA-based vocal entrainment measures with multiple instance learning. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011. LNCS, vol. 6975, pp. 31–41. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24571-8_4

    Chapter  Google Scholar 

  19. Wu, B., et al.: Music emotion recognition by multi-label multi-layer multi-instance multi-view learning. In: ACM International Conference on Multimedia, pp. 117–126. ACM (2014)

    Google Scholar 

  20. Jafari, A., et al.: An EEG artifact identification embedded system using ICA and multi-instance learning. In: IEEE International Symposium on Circuits and Systems, pp. 1–4. IEEE (2017)

    Google Scholar 

  21. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Advances in Neural Information Processing Systems, vol. 200, no. 2, pp. 570–576 (1998)

    Google Scholar 

  22. Weidmann, N., Frank, E., Pfahringer, B.: A two-level learning method for generalized multi-instance problems. In: Lavrač, N., Gamberger, D., Blockeel, H., Todorovski, L. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 468–479. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39857-8_42

    Chapter  Google Scholar 

  23. Wang, J., Zucker, J.D.: Solving the multiple-instance problem: a lazy learning approach. In: Seventeenth International Conference on Machine Learning, pp. 1119–1126. Morgan Kaufmann Publishers Inc. (2000)

    Google Scholar 

  24. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems, vol. 15, no. 2, pp. 561–568 (2002)

    Google Scholar 

  25. Koelstra, S., et al.: DEAP: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)

    Article  Google Scholar 

  26. Bos, D.O.: EEG-based Emotion Recognition (2008)

    Google Scholar 

  27. Lang, P.J.: The emotion probe. Studies of motivation and attention. Am. Psychol. 50(5), 372 (1995)

    Article  Google Scholar 

  28. Zhao, Q., et al.: Automatic identification and removal of ocular artifacts in EEG–improved adaptive predictor filtering for portable applications. IEEE Trans. Nanobiosci. 13(2), 109–117 (2014)

    Article  Google Scholar 

  29. Seitsonen, E.R., et al.: EEG spectral entropy, heart rate, photoplethysmography and motor responses to skin incision during sevoflurane anaesthesia. Acta Anaesthesiol. Scand. 49(3), 284–292 (2005)

    Article  Google Scholar 

  30. Inuso, G., et al.: Brain activity investigation by EEG processing: wavelet analysis, kurtosis and Renyi’s entropy for artifact detection. In: International Conference on Information Acquisition, pp. 195–200. IEEE (2007)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Basic Research Program of China (973 Program) (No.2014CB744600), the state key development program of China (No.2017YFE0111900), the National Natural Science Foundation of China (grant No.61402211, No.61210010) and the Fundamental Research Funds for the Central Universities (lzujbky-2017-196, lzujbky-2017-kb08). The authors acknowledge European Community’s Seventh Framework Program (FP7/2007-2011) for their DEAP database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X. et al. (2018). Emotion Recognition Based on Electroencephalogram Using a Multiple Instance Learning Framework. In: Huang, DS., Jo, KH., Zhang, XL. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10955. Springer, Cham. https://doi.org/10.1007/978-3-319-95933-7_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95933-7_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95932-0

  • Online ISBN: 978-3-319-95933-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics