Skip to main content

Leaf Classification Utilizing Densely Connected Convolutional Networks with a Self-gated Activation Function

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10956))

Abstract

Plant is of vital importance to human life, so it is necessary to research and protect them. Recently, convolutional neural network has been the most widely used technique for the task of image classification, and all kinds of convolutional neural network architecture has been proposed, including Densely connected convolutional networks (DenseNet). It has been shown that the selection of activation functions is of great importance to the training dynamics and task accuracy in deep neural networks. In this paper, we propose a new architecture that combines DenseNet with a new self-gated activation function. The experiment shows that the new architecture can get good results on the task of leaf classification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Huang, G., Liu, Z., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1. no. 2. 2017

    Google Scholar 

  2. Ramachandran, P., Zoph, B., Le, Q.V.: Swish: a self-gated activation function. arXiv preprint arXiv:1710.05941 (2017)

  3. Wang, X.F., Huang, D.S., Xu, H.: An efficient local Chan-Vese model for image segmentation. Pattern Recognit. 43(3), 603–618 (2010)

    Article  Google Scholar 

  4. Li, B., Huang, D.S.: Locally linear discriminant embedding: an efficient method for face recognition. Pattern Recognit. 41(12), 3813–3821 (2008)

    Article  Google Scholar 

  5. Huang, D.S.: Systematic Theory of Neural Networks for Pattern Recognition. Publishing House of Electronic Industry of China, May 1996

    Google Scholar 

  6. Huang, D.S., Du, J.-X.: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Netw. 19(12), 2099–2115 (2008)

    Article  Google Scholar 

  7. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural network. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  8. Won, Y., Gader, P.D., Coffield, P.C.: Morphological shared-weight networks with applications to automatic target recognition. IEEE Trans. Neural Netw. 8(5), 1195–1203 (1997)

    Article  Google Scholar 

  9. Serre, T., Riesenhuber, M., Louie, J., Poggio, T.: On the role of object-specific features for real world object recognition in biological vision. In: Bülthoff, H.H., Wallraven, C., Lee, S.-W., Poggio, T.A. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 387–397. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36181-2_39

    Chapter  MATH  Google Scholar 

  10. Huang, D.S.: Radial basis probabilistic neural networks: model and application. Int. J. Pattern Recognit. Artif. Intell. 13(7), 1083–1101 (1999)

    Article  Google Scholar 

  11. Wang, X.-F., Huang, D.S.: A novel density-based clustering framework by using level set method. IEEE Trans. Knowl. Data Eng. 21(11), 1515–1531 (2009)

    Article  Google Scholar 

  12. Shang, L., Huang, D.S., Du, J.-X., Zheng, C.-H.: Palmprint recognition using fast ICA algorithm and radial basis probabilistic neural network. Neurocomputing 69(13-15), 1782–1786 (2006)

    Article  Google Scholar 

  13. Zhao, Z.-Q., Huang, D.S., Sun, B.-Y.: Human face recognition based on multiple features using neural networks committee. Pattern Recognit. Lett. 25(12), 1351–1358 (2004)

    Article  Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  15. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  16. Kaiming, H., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  17. Huang, D.S., Ip, H.H.S., Law, K.C.K., Chi, Z.: Zeroing polynomials using modified constrained neural network approach. IEEE Trans. Neural Netw. 16(3), 721–732 (2005)

    Article  Google Scholar 

  18. Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  19. Larsson, G., Maire, M., Shakhnarovich, G.: Fractalnet: ultra-deep neural networks without residuals. arXiv preprint arXiv:1605.07648 (2016)

  20. Huang, D.S., Zhao, W.-B.: Determining the centers of radial basis probabilistic neural networks by recursive orthogonal least square algorithms. Appl. Math. Comput. 162(1), 461–473 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Huang, D.S.: Application of generalized radial basis function networks to recognition of radar targets. Int. J. Pattern Recognit. Artif. Intell. 13(6), 945–962 (1999)

    Article  Google Scholar 

  22. Huang, D.S., Ma, S.D.: Linear and nonlinear feedforward neural network classifiers: a comprehensive understanding. J. Intell. Syst. 9(1), 1–38 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants of the National Science Foundation of China, Nos. 61472280, 61672203, 61472173, 61572447, 61772357, 31571364, 61520106006, 61772370, 61702371 and 61672382, China Post-doctoral Science Foundation Grant, Nos. 2016M601646 & 2017M611619, and supported by “BAGUI Scholar” Program of Guangxi Zhuang Autonomous Region of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dezhu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, D., Yang, H., Yuan, CA., Qin, X. (2018). Leaf Classification Utilizing Densely Connected Convolutional Networks with a Self-gated Activation Function. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95957-3_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95956-6

  • Online ISBN: 978-3-319-95957-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics