Skip to main content

Insect-Inspired Elementary Motion Detection Embracing Resistive Memory and Spiking Neural Networks

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10928))

Included in the following conference series:

Abstract

Computation of the direction of motion and the detection of collisions are important features of autonomous robotic systems for course steering and avoidance manoeuvres. Current approaches typically rely on computing these features in software using algorithms implemented on a microprocessor. However, the power consumption, computational latency and form factor limit their applicability. In this work we take inspiration from motion detection studied in the Drosophila visual system to implement an alternative. The nervous system of the Drosophila contains 150000 neurons [1] and computes information in a parallel fashion. We propose a topology comprising a dynamic vision sensor (DVS) which provides input to spiking neural networks (SNN). The network is realised through interconnecting leaky-integrate and fire (LIF) complementary metal oxide semiconductor (CMOS) neurons with hafnium dioxide (HfO2) based resistive random access memories (RRAM) acting as the synaptic connections between them. A genetic algorithm (GA) is used to optimize the parameters of the network, within an experimentally determined range of RRAM conductance values, and through simulation it is demonstrated that the system can compute the direction of motion of a grating. Finally, we demonstrate that by modulating RRAM conductances and adjusting network component time constants the range of grating velocities to which it is most sensitive can be adapted. It is also shown that this allows for the system to reduce power consumption when sensitive to lower velocity stimulus. This mimics the behavior observed in Drosophila whereby the neuromodulator octopamine adjusts the response of the motion detection system when the insect is resting or flying.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiang, A.S., Lin, C.Y., Chuang, C.C., Chang, H.M., Hsieh, C.H., Yeh, C.W., Shih, C.T., Wu, J.J., Wang, G.T., Chen, Y.C., Wu, C.C., Chen, G.Y., Ching, Y.T., Lee, P.C., Lin, C.Y., Lin, H.H., Wu, C.C., Hsu, H.W., Huang, Y.A., Chen, J.Y., Chiang, H.J., Lu, C.F., Ni, R.F., Yeh, C.Y., Hwang, J.K.: Three-dimensional reconstruction of brain-wide wiring networks in drosophila at single-cell resolution. Curr. Biol. 21(1), 1–11 (2011)

    Article  Google Scholar 

  2. Takemura, S., Bharioke, A., Lu, Z., Nern, A., Vitaladevuni, S., Rivlin, P.K., Katz, W.T., Olbris, D.J., Plaza, S.M., Winston, P., Zhao, T., Horne, J.A., Fetter, R.D., Takemura, S., Blazek, K., Chang, L.A., Ogundeyi, O., Saunders, M.A., Shapiro, V., Sigmund, C., Rubin, G.M., Scheffer, L.K., Meinertzhagen, I.A., Chklovskii, D.B.: A visual motion detection circuit suggested by drosophila connectomics. Nature 500, 175 (2013)

    Article  Google Scholar 

  3. Maisak, M.S., Haag, J., Ammer, G., Serbe, E., Meier, M., Leonhardt, A., Schilling, T., Bahl, A., Rubin, G.M., Nern, A., Dickson, B.J., Reiff, D.F., Hopp, E., Borst, A.: A directional tuning map of drosophila elementary motion detectors. Nature 500, 212 (2013)

    Article  Google Scholar 

  4. Haag, J., Arenz, A., Serbe, E., Gabbiani, F., Borst, A.: Complementary mechanisms create direction selectivity in the fly. eLife 5, e17421 (2016)

    Article  Google Scholar 

  5. Behnia, R., Clark, D.A., Carter, A.G., Clandinin, T.R., Desplan, C.: Processing properties of ON and OFF pathways for drosophila motion detection. Nature 512, 427 (2014)

    Article  Google Scholar 

  6. Klapoetke, N.C., Nern, A., Peek, M.Y., Rogers, E.M., Breads, P., Rubin, G.M., Reiser, M.B., Card, G.M.: Ultra-selective looming detection from radial motion opponency. Nature 551, 237 (2017)

    Article  Google Scholar 

  7. Jung, S.N., Borst, A., Haag, J.: Flight activity alters velocity tuning of fly motion-sensitive neurons. J. Neurosci. 31(25), 9231–9237 (2011)

    Article  Google Scholar 

  8. Suver, M., Mamiya, A., Dickinson, M.: Octopamine neurons mediate flight-induced modulation of visual processing in drosophila. Curr. Biol. 22(24), 2294–2302 (2012)

    Article  Google Scholar 

  9. Arenz, A., Drews, M.S., Richter, F.G., Ammer, G., Borst, A.: The temporal tuning of the drosophila motion detectors is determined by the dynamics of their input elements. Curr. Biol. 27(7), 929–944 (2017)

    Article  Google Scholar 

  10. Hassenstein, V., Reichardt, W.: Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforsch. B 11, 513 (1956)

    Article  Google Scholar 

  11. Harrison, R.R., Koch, C.: An analog VLSI model of the fly elementary motion detector. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems 10, pp. 880–886. MIT Press, Cambridge (1998)

    Google Scholar 

  12. Liu, S.C.: A neuromorphic a VLSI model of global motion processing in the fly. IEEE Trans. Circ. Syst. II Analog Digital Signal Proces. 47(12), 1458–1467 (2000)

    Article  Google Scholar 

  13. Harrison, R.R.: A biologically inspired analog IC for visual collision detection. IEEE Trans. Circ. Syst. I Regul. Pap. 52(11), 2308–2318 (2005)

    Article  Google Scholar 

  14. Plett, J., Bahl, A., Buss, M., Kühnlenz, K., Borst, A.: Bio-inspired visual ego-rotation sensor for MAVs. Biol. Cybern. 106(1), 51–63 (2012)

    Article  Google Scholar 

  15. Krammer, J.: Compact integrated motion sensor with three-pixel interaction. IEEE Trans. Pattern Anal. Mach. Intell. 44(2), 86–101 (1996)

    Google Scholar 

  16. Krammer, J., Koch, C.: Pulse-based analog VLSI velocity sensors. IEEE Trans. Cir. Syst. II Analog Digit. Signal Process. 44(2), 86–101 (1997). https://doi.org/10.1109/82.554431

    Article  Google Scholar 

  17. Sarpeshkar, R., Kramer, J., Indiveri, G., Koch, C.: Analog VLSI architectures for motion processing: from fundamental limits to system applications. Proc. IEEE 84(7), 969–987 (1996). https://doi.org/10.1109/5.503298

    Article  Google Scholar 

  18. Shoemaker, P.A.: Implementation of Visual motion detection in analog neuromorphic circuitry - a case study of the issue of circuit precision. Proc. IEEE 102(10), 1557–1570 (2014)

    Article  Google Scholar 

  19. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128 \(\times \) 128 120 dB 15 \(\upmu \)s latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circ. 43(2), 566–576 (2008)

    Article  Google Scholar 

  20. Serrano-Gotarredona, T., Linares-Barranco, B.: A 128 \(\times \)128 1.5% contrast sensitivity 0.9% FPN 3 \(\upmu \)s latency 4 mW asynchronous frame-free dynamic vision sensor using transimpedance preamplifiers. IEEE J. Solid-State Circ. 48(3), 827–838 (2013)

    Article  Google Scholar 

  21. Chan, V., Liu, S.C., van Schaik, A.: AER EAR: a matched silicon cochlea pair with address event representation interface. IEEE Trans. Circ. Syst. I Regul. Pap. 54(1), 48–59 (2007). https://doi.org/10.1109/TCSI.2006.887979

    Article  Google Scholar 

  22. Grossi, A., Vianello, E., Zambelli, C., Royer, P., Noel, J.P., Giraud, B., Perniola, L., Olivo, P., Nowak, E.: Experimental investigation of 4kbit RRAM arrays programming conditions suitable for TCAM. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. PP(99), 1–9 (2018)

    Article  Google Scholar 

  23. Grossi, A., Nowak, E., Zambelli, C., Pellissier, C., Bernasconi, S., Cibrario, G., Hajjam, K.E., Crochemore, R., Nodin, J.F., Olivo, P., Perniola, L.: Fundamental variability limits of filament-based RRAM. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 4.7.1–4.7.4, December 2016. https://doi.org/10.1109/IEDM.2016.7838348

  24. Garbin, D., Vianello, E., Bichler, O., Rafhay, Q., Gamrat, C., Ghibaudo, G., DeSalvo, B., Perniola, L.: HfO\(_{2}\)-based OxRAM devices as synapses for convolutional neural networks. IEEE Trans. Electron Devices 62(8), 2494–2501 (2015). https://doi.org/10.1109/TED.2015.2440102

    Article  Google Scholar 

  25. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann, M., Morrison, A., Goodman, P.H., Harris, F.C., Zirpe, M., Natschläger, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A.P., El Boustani, S., Destexhe, A.: Simulation of networks of spiking neurons: a review of toolsand strategies. J. Comput. Neurosci. 23(3), 349–398 (2007)

    Article  MathSciNet  Google Scholar 

  26. Simon, D.: Evolutionary Optimization Algorithms. Wiley, Hoboken (2013)

    Google Scholar 

  27. Montana, D.J., Davis, L.: Training feedforward neural networks using genetic algorithms. In: IJCAI 1989 Proceedings of the 11th International Joint Conference on Artificial Intelligence - Volume 1, pp. 762–767. Morgan Kaufmann Publishers Inc., San Francisco (1989)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of J. Casas through the CARNOT chair of excellency in bio-inspired technologies. In addition this work was also partially supported by the h2020 NeuRAM3 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dalgaty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dalgaty, T. et al. (2018). Insect-Inspired Elementary Motion Detection Embracing Resistive Memory and Spiking Neural Networks. In: Vouloutsi , V., et al. Biomimetic and Biohybrid Systems. Living Machines 2018. Lecture Notes in Computer Science(), vol 10928. Springer, Cham. https://doi.org/10.1007/978-3-319-95972-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95972-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95971-9

  • Online ISBN: 978-3-319-95972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics