
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Software Citation in Theory and Practice
Citation for published version:
Katz, DS & Chue Hong, N 2018, Software Citation in Theory and Practice. in Mathematical Software –
ICMS 2018: 6th International Conference, South Bend, IN, USA, July 24-27, 2018, Proceedings. Lecture
Notes in Computer Science, vol. 10931, Springer, Cham, pp. 289-296, 6th International Congress on
Mathematical Software, Notre Dame, Indiana, United States, 24/07/18. https://doi.org/10.1007/978-3-319-
96418-8

Digital Object Identifier (DOI):
10.1007/978-3-319-96418-8

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Mathematical Software – ICMS 2018

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Apr. 2024

https://doi.org/10.1007/978-3-319-96418-8
https://doi.org/10.1007/978-3-319-96418-8
https://doi.org/10.1007/978-3-319-96418-8
https://www.research.ed.ac.uk/en/publications/17a0f7f2-58d3-4b14-97df-97249aa729cb


Software Citation in Theory and Practice

Daniel S. Katz1 and Neil P. Chue Hong2

1 University of Illinois Urbana-Champaign, USA
d.katz@ieee.org,

2 University of Edinburgh, UK
n.chuehong@epcc.ed.ac.uk,

https://www.software.ac.uk/

Abstract. In most fields, computational models and data analysis have
become a significant part of how research is performed, in addition to
the more traditional theory and experiment. Mathematics is no excep-
tion to this trend. While the system of publication and credit for theory
and experiment (journals and books, often monographs) has developed
and has become an expected part of the culture, how research is shared
and how candidates for hiring, promotion are evaluated, software (and
data) do not have the same history. A group working as part of the
FORCE11 community developed a set of principles for software citation
that fit software into the journal citation system, allow software to be
published and then cited, and there are now over 50,000 DOIs that have
been issued for software. However, some challenges remain, including:
promoting the idea of software citation to developers and users; collabo-
rating with publishers to ensure that systems collect and retain required
metadata; ensuring that the rest of the scholarly infrastructure, particu-
larly indexing sites, include software; working with communities so that
software efforts count; and understanding how best to cite software that
has not been published.

Keywords: software citation, credit, software identifiers, software meta-
data, software repositories, bibliometrics

1 Introduction

In most fields, computational models and data analysis have become a significant
part of how research is performed, in addition to the more traditional theory and
experiment. Evidence of the increased role and importance of software in today’s
research can be found in surveys and in papers, and while neither of these are
specific to mathematics, it is likely no exception.

Two recent surveys, one of UK academics at Russell Group Universities [9,
10], and one of members of (US) National Postdoctoral Research Association [15,
14] asked researchers asked how important software is to them, and found that
67% / 63% (UK/US respectively) of respondents said, “my research would not
be possible without software.” 21% / 31% said, “my research would be possible
but harder,” while just 10% / 6% said, “it would make no difference.” A similar
survey of mathematicians would be welcome.



2 Katz – Chue Hong

One of the authors of this paper scanned six months of Science in mid-
2013, and found that about half the papers were software-intensive projects,
and most of the other papers also relied on some software. A formal study of
90 randomly selected papers in the biology literature in 2015 found that 80%
mentioned software, and that those articles mentioned an average of 4.85 software
packages [11]. A more recent study of Nature in Jan–Mar 2017 found software
mentioned in 32 of 40 research articles, with an average of 6.5 software packages
mentioned per article [16]. A similar study could be done of the mathematics
literature. And while these studies have been manually performed by humans,
natural language processing and machine learning could be used to expand their
reach.

The system of publication and credit for theory and experiment (journals
and books, often monographs) has developed and has become an expected part
of the culture, how research is shared and how candidates for hiring, promotion
are evaluated; software (and data) do not have the same history. In order to
cite software, we could overload the current citation system to add software or
alternatively, we could develop a new citation system that works for all kinds of
products. As developing a new citation system would be very difficult, current
efforts related to software citation have focused on the overloading approach.

2 Software Citation Principles

FORCE113 is a community of scholars, librarians, archivists, publishers and re-
search funders that has arisen organically to help facilitate the change toward
improved knowledge creation and sharing. In 2015 and 2016, a FORCE11 Soft-
ware Citation working group developed a set of software citation principles [19].
The group grew to about 60 members, including researchers, developers, pub-
lishers, repository developer and maintainers, and librarians.

The group worked on GitHub4 and on the FORCE11 web site5. It reviewed
existing community practices and developed a set of use cases for software ci-
tation, and then drafted a software citation principles document. To do this,
the group started with previously published data citation principles [5], updated
them based on software use cases and related work, and further updated them
based on working group discussions. This draft was then subjected to commu-
nity feedback and review through a variety of channels, including a workshop
at FORCE2016 in April 2016. In late 2016, the paper and its reviews were pub-
lished [19]. The paper includes a set of six principles (general statements), use
cases (where the principles should apply), and discussion (suggestions on how to
apply the principles).

3 https://www.force11.org
4 https://github.com/force11/force11-scwg
5 https://www.force11.org/group/software-citation-working-group



Software Citation in Theory and Practice 3

The software citation principles, quoting from [19], are:

1. Importance. Software should be considered a legitimate and citable
product of research. Software citations should be accorded the same
importance in the scholarly record as citations of other research
products, such as publications and data; they should be included
in the metadata of the citing work, for example in the reference list
of a journal article, and should not be omitted or separated. Software
should be cited on the same basis as any other research product such
as a paper or a book, that is, authors should cite the appropriate set
of software products just as they cite the appropriate set of papers.

2. Credit and Attribution. Software citations should facilitate giv-
ing scholarly credit and normative, legal attribution to all contribu-
tors to the software, recognizing that a single style or mechanism of
attribution may not be applicable to all software.

3. Unique Identification. A software citation should include a
method for identification that is machine actionable, globally unique,
interoperable, and recognized by at least a community of the cor-
responding domain experts, and preferably by general public re-
searchers.

4. Persistence. Unique identifiers and metadata describing the soft-
ware and its disposition should persist – even beyond the lifespan of
the software they describe.

5. Accessibility. Software citations should facilitate access to the soft-
ware itself and to its associated metadata, documentation, data, and
other materials necessary for both humans and machines to make in-
formed use of the referenced software.

6. Specificity. Software citations should facilitate identification of, and
access to, the specific version of software that was used. Software
identification should be as specific as necessary, such as using version
numbers, revision numbers, or variants such as platforms.

There are now over 50,000 DOIs that have been issued for software, and more
than 60% of them have been issued since the FORCE11 group published the first
preprint of the principles paper [20].

3 Practices and Examples

In practice, the adoption of software citation depends on developing community
guidelines that implement the software citation principles within the context of
existing community scholarly communication and software development norms.

For some commonly used commercial software, there are mandatory citations,
e.g. as specified by SAS [17] or Matlab [4]. In other cases, authors of research
software may provide a recommended general citation referring to suite of related
software, e.g. the HSL Mathematical Software Library [18]. However, in many of
these cases, the citations do not provide enough information to allow crediting



4 Katz – Chue Hong

of the software authors (Principle 2), a machine actionable unique identifier
(Principle 3) and persistent identifiers and metadata (Principle 4) or – in the case
of HSL – an understanding of which version of the software was used (Principle
6).

Examples of mandatory and general software citations that do not fully
implement the Software Citation Principles:

– The output for this paper was generated using SAS/STAT software, Ver-
sion 14.1 of the SAS System for Unix. Copyright c©2018 SAS Institute
Inc. SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc., Cary, NC,
USA.

– MATLAB and Statistics Toolbox Release 2012b, The MathWorks, Inc.,
Natick, Massachusetts, United States.

– HSL. A collection of Fortran codes for large scale scientific computation.
http://www.hsl.rl.ac.uk/

Some software frameworks and platforms provide clear guidance on how to
support particular versions or a specific citation for a package (Principle 6), e.g.,
by using the citation() function for R packages or the instructions for citing
the GAP system for computational discrete algebra [23]. However these still do
not provide persistent, machine actionable identifiers.

Examples of citations of specific packages as recommended by the software
platform they are distributed with that mostly implement the principles:

– Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K. (2018).
cluster: Cluster Analysis Basics and Extensions. R package version 2.0.7-
1.

– Emma J. Moore, Christopher D. Wensley, groupoids - a GAP package,
1.54, 29/11/2017, https://gap-packages.github.io/groupoids/

However most software used in research does not provide guidance on how
to cite it properly. If the software’s website, or a CITATION file or README
file with the source code, specifies how to cite the software, the author should
use this information; this might be a reference to a software paper, or other
publication. If the source code includes a codemeta.json [12] or Citation File
Format (CFF) [7] file, the metadata in these files can be used with appropriate
tooling to generate a citation automatically. Otherwise, the following guidance
will help to construct a citation that implements the principles:

– For the authors, try to include all contributors to the software or, if this is
not clear, name the project as the author. This may encourage some projects
to make citation metadata available, including listing the authors.



Software Citation in Theory and Practice 5

– Include the name of the software, along with specific version/release infor-
mation.

– Try to include a method for identification that is machine actionable, globally
unique and interoperable. This ideally is a DOI but if there is no DOI, a URL
pointing to a specific release might be the next best option.

– If there is a landing page that includes metadata, point to that, not directly
to the software. Where you have the choice of pointing to a URL for general
landing page including metadata, versus a specific URL (e.g. to a tag of a
version) which does not contain sufficient metadata it is preferred to use
the URL for the general landing page as the identifier, and clearly state the
version.

Examples of citations for software using the suggested guidelines:

– Voevodsky, Vladimir and Ahrens, Benedikt and
Grayson, Daniel and others. UniMath — a
computer-checked library of univalent mathematics.
https://github.com/UniMath/UniMath [accessed 2018-04-27]

– Eigen Project. (2017). Eigen [software] version 3.3.4 Available from
https://bitbucket.org/eigen/eigen/ [accessed 2018-04-27]

For developers of a piece of software, there are several things that can be done
to make it easier for others to cite the software. At a minimum, the code should
be published using a clear version number and license. If the code is in GitHub,
the developer can make it easily citable using Github’s integration with Zenodo
[8]. Alternatively, the developer can manually deposit it in a digital repository
such as Zenodo or Figshare – supplying metadata including the authors, title
and version – and being provided with a Digital Object Identifier (DOI) and
often a recommended citation that adheres to the Software Citation Principles.
This information can be used to insert the citation that others should use into
the software documentation, preferably as a CITATION file.

Example of a citation generated by Zenodo that implements the principles:

– Vince Knight, & Ria Baldevia. (2018, January 31).
drvinceknight/Nashpy: v0.0.13 (Version v0.0.13). Zenodo.
http://doi.org/10.5281/zenodo.1163694

Of course, the fact that swMath [21] exists means that citation should be
integrated with it, providing suggested citations for software in it, and using it
to track and understand citations of math software.



6 Katz – Chue Hong

4 Challenges

In May 2017, the FORCE11 Software Citation Working Group ended, and a
new Software Citation Implementation Working Group6 started. This group has
the goal of moving the software citation principles to implementation. Those
interested in following the new group can join it.

Many challenges remain, including:

– Encouraging citation of software by authors. Data citation is still not
commonplace in many disciplines, let alone software citation. Author guid-
ance for software citation is varied in the mathematical sciences. Both the
Journal of Mathematical and Computer Simulation [22] and Journal of Sta-
tistical Software [13] provide guidance that follows the Software Citation
Principles, but others - including the International Congress on Mathemati-
cal Software - do not. This will require the community to work with journals,
conferences, and publishers to implement the Software Citation Principles in
a way that they can be adopted by researchers in the area, similar to efforts
in astronomy [2]. Tools such as CiteAs [1] may also help.

– Promoting the idea of software citation to developers. The benefits
of making software more easily citable are not always obvious. The time
taken to submit metadata can be reduced by the use of formats such as
CodeMeta [12] and Citation File Format [7], particularly as they are adopted
by repositories [3] and citation tools.

– Citing unpublished software. When authors do not publish their soft-
ware, there is no archival link a citer can point to. The in-progress work to
build a software archive for all source code by Software Heritage [6] may
solve this problem.

– Ensuring quality of information. Even when information is provided, it
may be discarded in the publication process. Collaboration with publishers,
funders, and the identifier and citation infrastructure will be required to
ensure that systems collect and retain required metadata, making it easier
to discover and reuse software.

– Giving credit for software through citation. Ultimately, software cita-
tion will become widely practiced when the rest of the scholarly infrastruc-
ture, particularly indexing sites, includes software, and research communities
recognize the value of software as a research output, thus providing an in-
centive for developers and authors to publish and reuse research software.

5 Conclusions

Although software citation is currently not standardized nor widely practiced,
the publication of the Software Citation Principles has acted as a foundation on
which to build community guidelines and improved tooling and infrastructure
to support citation. The FORCE11 Software Citation Implementation Working

6 https://www.force11.org/group/software-citation-implementation-working-group



Software Citation in Theory and Practice 7

Group is taking forward work to address the challenges standing in the way of
software citation, and looks to the mathematical sciences community to work
towards implementing the principles in the future.

References

1. Citeas, http://citeas.org/, accessed: 2018-04-27
2. American Astronomical Society: Citing repositories in AAS journals

(AJ/ApJ) (2018), https://github.com/AASJournals/Tutorials/blob/master/

Repositories/CitingRepositories.md, accessed: 2018-04-27
3. Caltech Library: Enhanced software preservation now available

in CaltechDATA! (2018), https://www.library.caltech.edu/news/

enhanced-software-preservation-now-available-caltechdata, accessed:
2018-04-27

4. Croucher, M.: How to cite MATLAB in research papers (2013), http://www.

walkingrandomly.com/?p=4767, accessed: 2018-04-27
5. Data Citation Synthesis Group: Joint declaration of data citation principles (2014).

https://doi.org/10.25490/a97f-egyk, Martone, M. (ed), FORCE11, San Diego, CA
6. Di Cosmo, R., Zacchiroli, S.: Software Heritage: Why and how to preserve

software source code. In: iPRES 2017: 14th International Conference on Dig-
ital Preservation. Kyoto, Japan (2017), https://hal.archives-ouvertes.

fr/hal-01590958https://hal.archives-ouvertes.fr/hal-01590958/file/

ipres-2017-software-heritage.pdf
7. Druskat, S.: Citation file format (CFF) (2017).

https://doi.org/10.5281/zenodo.1003150, https://github.com/sdruskat/

citation-file-format
8. GitHub: Making your code citable (2018), https://guides.github.com/

activities/citable-code/, accessed: 2018-04-27
9. Hettrick, S.: It’s impossible to conduct research without software, say 7 out of 10

UK researchers (2014), http://bit.ly/2B8y6Iz
10. Hettrick, S., Antonioletti, M., Carr, L., Chue Hong, N., Crouch, S., De Roure, D.,

Emsley, I., Goble, C., Hay, A., Inupakutika, D., Jackson, M., Nenadic, A., Parkin-
son, T., Parsons, M.I., Pawlik, A., Peru, G., Proeme, A., Robinson, J., Sufi, S.: UK
research software survey 2014 (Dec 2014). https://doi.org/10.5281/zenodo.14809

11. Howison, J., Bullard, J.: Software in the scientific literature: Problems with see-
ing, finding, and using software mentioned in the biology literature. Journal of
the Association for Information Science and Technology 67(9), 2137–2155 (2016).
https://doi.org/10.1002/asi.23538

12. Jones, M.B., Boettiger, C., Mayes, A.C., Smith, A., Slaughter, P., Niemeyer,
K., Gil, Y., Fenner, M., Nowak, K., Hahnel, M., Coy, L., Allen, A.,
Crosas, M., Sands, A., Chue Hong, N., Cruse, P., Katz, D.S., Goble, C.:
CodeMeta: an exchange schema for software metadata. version 2.0. (2017).
https://doi.org/10.5063/schema/codemeta-2.0

13. Journal of Statistical Software: Journal of statistical software style guide, https:
//www.jstatsoft.org/pages/view/style, accessed: 2018-04-27

14. Nangia, U., Katz, D.S.: Survey of National Postdoctoral Association - dataset (Aug
2017). https://doi.org/10.5281/zenodo.843607

15. Nangia, U., Katz, D.S.: Track 1 Paper: Surveying the U.S. National Postdoctoral
Association Regarding Software Use and Training in Research. figshare (8 2017).
https://doi.org/10.6084/m9.figshare.5328442.v3



8 Katz – Chue Hong

16. Nangia, U., Katz, D.S.: Understanding software in research: Initial results
from examining Nature and a call for collaboration. In: Proceedings of
the 13th IEEE International Conference on eScience (eScience 2017) (2017).
https://doi.org/10.1109/eScience.2017.78

17. SAS Institute Inc.: Referencing data analysis performed with SAS soft-
ware (2015), https://www.sas.com/en_us/legal/editorial-guidelines.html,
accessed: 2018-04-27

18. Science & Technology Facilities Council: HSL. a collection of Fortran codes
for large scale scientific computation, http://www.hsl.rl.ac.uk/catalogue/, ac-
cessed: 2018-04-27

19. Smith, A.M., Katz, D.S., Niemeyer, K.E., FORCE11 Software Citation Working
Group: Software citation principles. PeerJ Computer Science 2, e86 (Sep 2016).
https://doi.org/10.7717/peerj-cs.86

20. Smith, A.M., Katz, D.S., Niemeyer, K.E., FORCE11 Software Citation Work-
ing Group: Software citation principles. PeerJ Preprints 4, e2169v1 (Jun 2016).
https://doi.org/10.7287/peerj.preprints.2169v1

21. swMath: swMATH: An information service for mathematical software, http://

www.swmath.org, accessed: 2018-04-30
22. Taylor & Francis: Taylor & Francis standard reference style — NLM, https://www.

tandf.co.uk//journals/authors/style/reference/tf_NLM.pdf, accessed: 2018-
04-27

23. The GAP Group: How to cite GAP (2018), https://www.gap-system.org/

Contacts/cite.html, accessed: 2018-04-27


