
Lecture Notes in Computer Science 11026

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Amel Bennaceur • Reiner Hähnle
Karl Meinke (Eds.)

Machine Learning
for Dynamic
Software Analysis
Potentials and Limits

International Dagstuhl Seminar 16172
Dagstuhl Castle, Germany, April 24–27, 2016
Revised Papers

123

Editors
Amel Bennaceur
The Open University
Milton Keynes
UK

Reiner Hähnle
Technische Universität Darmstadt
Darmstadt
Germany

Karl Meinke
KTH Royal Institute of Technology
Stockholm
Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-96561-1 ISBN 978-3-319-96562-8 (eBook)
https://doi.org/10.1007/978-3-319-96562-8

Library of Congress Control Number: 2018948379

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover illustration: Classification of key concepts of ML for software engineering. LNCS 11026, p. 5. Used
with permission.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-6124-9622
http://orcid.org/0000-0001-8000-7613
http://orcid.org/0000-0002-9706-5008

Preface

Machine learning of software artefacts is an emerging area of interaction between the
machine learning (ML) and software analysis (SA) communities. Increased produc-
tivity in software engineering hinges on the creation of new adaptive, scalable tools that
can analyze large and continuously changing software systems. For example: Agile
software development using continuous integration and delivery can require new
documentation models, static analyses, proofs and tests of millions of lines of code
every 24 h. These needs are being addressed by new SA techniques based on ML, such
as learning-based software testing, invariant generation, or code synthesis. ML is a
powerful paradigm for SA that provides novel approaches to automating the generation
of models and other essential artefacts. However, the ML and SA communities are
traditionally separate, each with its own agenda.

This book is a follow-up of a Dagstuhl Seminar entitled “16172: Machine Learning
for Dynamic Software Analysis: Potentials and Limits” that was held during April
24–27, 2016. This seminar brought together top researchers active in these two fields to
present the state of the art and suggest new directions and collaborations for future
research. We, the organizers, feel strongly that both communities have much to learn
from each other, and the seminar focused strongly on fostering a spirit of collaboration
in order to share insights and to expand and strengthen the cross-fertilization between
these two communities.

Our goal in this book is to give an overview of the ML techniques that can be used
for SA and provide some example applications of their use. Besides an introductory
chapter, the book is structured into three parts: testing and learning, extension of
automata learning, and integrative approaches as follows.

Introduction

– The chapter by Bennaceur and Meinke entitled “Machine Learning for Software
Analysis: Models, Methods, and Applications” introduces the key concepts of ML
focusing on models and some of their applications in software engineering.

Testing and Learning

– The chapter by Meinke entitled “Learning-Based Testing: Recent Progress and
Future Prospects” reviews the fundamental concepts and theoretical principles of
learning-based techniques.

– The chapter by Aichernig, Mostowski, Mousavi, Tappler and Taromirad entitled
“Model-Based Testing and Learning” provides an overview of the different models
that can be used for testing and how they can be learnt.

– The chapter by Walkinshaw entitled “Testing Functional Black-Box Programs
without a Specification” focuses on examining test executions and informing the
selection of tests from programs that do not require sequential inputs.

Extensions of Automata Learning

– The chapter by Howar and Steffen entitled “Active Automata Learning in Practice:
An Annotated Bibliography of the Years 2011 to 2016” reviews the state of the art
and the open challenges for active automata learning.

– The chapter by Cassel, Howar, Jonsson and Steffen entitled “Extending Automata
Learning to Extended Finite State Machines” focuses on automata learning for
extended finite state machines.

– The chapter by Groz, Simao, Petrenko, and Oriat entitled “Inferring FSM Models of
Systems Without Reset” presents active automata learning algorithms that relax the
assumptions about the existence of an external oracle.

Integrative Approaches

– The chapter by Hähnle and Steffen entitled “Constraint-Based Behavioral Consis-
tency of Evolving Software Systems” proposes to combine glass-box analysis with
automata learning to help bridge the gap between the design and implementation
artefacts.

– The chapter by Alrajeh and Russo entitled “Logic-Based Machine Learning in
Software Engineering” focuses on logic-based learning and its application for
declarative specification refinement and revision.

While the papers in this book cover a wide range of topics regarding ML techniques
for model-based software analysis, additional research challenges and related research
topics still exist for further investigation.

We hope that you enjoy this book and that it will kindle your interest in and help
your understanding of this fascinating area in the overlap of ML and SA. We thank the
participants of the seminar for their time and their help in reviewing the chapters. Each
chapter was reviewed by at least two reviewers and many went through several revi-
sions. We acknowledge the support of Schloss Dagstuhl—Leibniz Center for Infor-
matics and thank the whole Dagstuhl team for their professional approach that made it
easy for the participants to network, to discuss, and to have a very productive seminar.
And finally, we sincerely thank the authors for their research efforts, for their will-
ingness to respond to feedback from the reviewers and editorial team. Without their
excellent contributions, this volume would not have been possible.

May 2018 Amel Bennaceur
Reiner Hähnle
Karl Meinke

VI Preface

Organization

Program Chairs

Amel Bennaceur The Open University, UK
Reiner Hähnle Technische Universität Darmstadt, Germany
Karl Meinke KTH Royal Institute of Technology, Sweden

Program Committee

Amel Bennaceur The Open University, UK
Roland Groz Grenoble Institute of Technology, France
Falk Howar TU Dortmund and Fraunhofer ISST, Germany
Reiner Hähnle Technische Universität Darmstadt, Germany
Karl Meinke KTH Royal Institute of Technology, Sweden
Mohammad Reza Mousavi School of IT, Halmstad University, Sweden
Bernhard Steffen TU Dortmund, Germany
Frits Vaandrager Radboud University, The Netherlands
Neil Walkinshaw The University of Leicester, UK

Contents

Introduction

Machine Learning for Software Analysis: Models, Methods,
and Applications . 3

Amel Bennaceur and Karl Meinke

Testing and Learning

Learning-Based Testing: Recent Progress and Future Prospects 53
Karl Meinke

Model Learning and Model-Based Testing . 74
Bernhard K. Aichernig, Wojciech Mostowski,
Mohammad Reza Mousavi, Martin Tappler, and Masoumeh Taromirad

Testing Functional Black-Box Programs Without a Specification. 101
Neil Walkinshaw

Extensions of Automata Learning

Active Automata Learning in Practice: An Annotated Bibliography
of the Years 2011 to 2016 . 123

Falk Howar and Bernhard Steffen

Extending Automata Learning to Extended Finite State Machines 149
Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen

Inferring FSM Models of Systems Without Reset . 178
Roland Groz, Adenilso Simao, Alexandre Petrenko, and Catherine Oriat

Integrative Approaches

Constraint-Based Behavioral Consistency of Evolving Software Systems 205
Reiner Hähnle and Bernhard Steffen

Logic-Based Learning: Theory and Application. 219
Dalal Alrajeh and Alessandra Russo

Author Index . 257

	Preface
	Introduction
	Testing and Learning
	Extensions of Automata Learning
	Integrative Approaches

	Organization
	Contents

