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Preface

Machine learning of software artefacts is an emerging area of interaction between the
machine learning (ML) and software analysis (SA) communities. Increased produc-
tivity in software engineering hinges on the creation of new adaptive, scalable tools that
can analyze large and continuously changing software systems. For example: Agile
software development using continuous integration and delivery can require new
documentation models, static analyses, proofs and tests of millions of lines of code
every 24 h. These needs are being addressed by new SA techniques based on ML, such
as learning-based software testing, invariant generation, or code synthesis. ML is a
powerful paradigm for SA that provides novel approaches to automating the generation
of models and other essential artefacts. However, the ML and SA communities are
traditionally separate, each with its own agenda.

This book is a follow-up of a Dagstuhl Seminar entitled “16172: Machine Learning
for Dynamic Software Analysis: Potentials and Limits” that was held during April
24–27, 2016. This seminar brought together top researchers active in these two fields to
present the state of the art and suggest new directions and collaborations for future
research. We, the organizers, feel strongly that both communities have much to learn
from each other, and the seminar focused strongly on fostering a spirit of collaboration
in order to share insights and to expand and strengthen the cross-fertilization between
these two communities.

Our goal in this book is to give an overview of the ML techniques that can be used
for SA and provide some example applications of their use. Besides an introductory
chapter, the book is structured into three parts: testing and learning, extension of
automata learning, and integrative approaches as follows.

Introduction

– The chapter by Bennaceur and Meinke entitled “Machine Learning for Software
Analysis: Models, Methods, and Applications” introduces the key concepts of ML
focusing on models and some of their applications in software engineering.

Testing and Learning

– The chapter by Meinke entitled “Learning-Based Testing: Recent Progress and
Future Prospects” reviews the fundamental concepts and theoretical principles of
learning-based techniques.

– The chapter by Aichernig, Mostowski, Mousavi, Tappler and Taromirad entitled
“Model-Based Testing and Learning” provides an overview of the different models
that can be used for testing and how they can be learnt.



– The chapter by Walkinshaw entitled “Testing Functional Black-Box Programs
without a Specification” focuses on examining test executions and informing the
selection of tests from programs that do not require sequential inputs.

Extensions of Automata Learning

– The chapter by Howar and Steffen entitled “Active Automata Learning in Practice:
An Annotated Bibliography of the Years 2011 to 2016” reviews the state of the art
and the open challenges for active automata learning.

– The chapter by Cassel, Howar, Jonsson and Steffen entitled “Extending Automata
Learning to Extended Finite State Machines” focuses on automata learning for
extended finite state machines.

– The chapter by Groz, Simao, Petrenko, and Oriat entitled “Inferring FSM Models of
Systems Without Reset” presents active automata learning algorithms that relax the
assumptions about the existence of an external oracle.

Integrative Approaches

– The chapter by Hähnle and Steffen entitled “Constraint-Based Behavioral Consis-
tency of Evolving Software Systems” proposes to combine glass-box analysis with
automata learning to help bridge the gap between the design and implementation
artefacts.

– The chapter by Alrajeh and Russo entitled “Logic-Based Machine Learning in
Software Engineering” focuses on logic-based learning and its application for
declarative specification refinement and revision.

While the papers in this book cover a wide range of topics regarding ML techniques
for model-based software analysis, additional research challenges and related research
topics still exist for further investigation.

We hope that you enjoy this book and that it will kindle your interest in and help
your understanding of this fascinating area in the overlap of ML and SA. We thank the
participants of the seminar for their time and their help in reviewing the chapters. Each
chapter was reviewed by at least two reviewers and many went through several revi-
sions. We acknowledge the support of Schloss Dagstuhl—Leibniz Center for Infor-
matics and thank the whole Dagstuhl team for their professional approach that made it
easy for the participants to network, to discuss, and to have a very productive seminar.
And finally, we sincerely thank the authors for their research efforts, for their will-
ingness to respond to feedback from the reviewers and editorial team. Without their
excellent contributions, this volume would not have been possible.

May 2018 Amel Bennaceur
Reiner Hähnle
Karl Meinke
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