
Updatable and Universal Common
Reference Strings with Applications

to zk-SNARKs

Jens Groth1, Markulf Kohlweiss2,3, Mary Maller1,2(B), Sarah Meiklejohn1,
and Ian Miers2,4

1 University College London, London, UK
{j.groth,mary.maller.15,s.meiklejohn}@ucl.ac.uk

2 Microsoft Research Cambridge, Cambridge, UK
3 University of Edinburgh, Edinburgh, UK

markulf.kohlweiss@ed.ac.uk
4 Cornell Tech, New York, USA

imiers@cs.jhu.edu

Abstract. By design, existing (pre-processing) zk-SNARKs embed a
secret trapdoor in a relation-dependent common reference strings (CRS).
The trapdoor is exploited by a (hypothetical) simulator to prove the
scheme is zero knowledge, and the secret-dependent structure facilitates
a linear-size CRS and linear-time prover computation. If known by a
real party, however, the trapdoor can be used to subvert the security of
the system. The structured CRS that makes zk-SNARKs practical also
makes deploying zk-SNARKS problematic, as it is difficult to argue why
the trapdoor would not be available to the entity responsible for gener-
ating the CRS. Moreover, for pre-processing zk-SNARKs a new trusted
CRS needs to be computed every time the relation is changed.

In this paper, we address both issues by proposing a model where a
number of users can update a universal CRS. The updatable CRS model
guarantees security if at least one of the users updating the CRS is hon-
est. We provide both a negative result, by showing that zk-SNARKs
with private secret-dependent polynomials in the CRS cannot be updat-
able, and a positive result by constructing a zk-SNARK based on a CRS
consisting only of secret-dependent monomials. The CRS is of quadratic
size, is updatable, and is universal in the sense that it can be specialized
into one or more relation-dependent CRS of linear size with linear-time
prover computation.

J. Groth—The research leading to these results has received funding from the Euro-
pean Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013)/ERC Grant Agreement no. 307937.
This work was done in part while Mary Maller was an intern at Microsoft Research
Cambridge, and she is funded by Microsoft Research Cambridge.
S. Meiklejohn—Supported in part by EPSRC Grant EP/N028104/1.
This work was done in part while Ian Miers was visiting Microsoft Research Cam-
bridge.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 698–728, 2018.
https://doi.org/10.1007/978-3-319-96878-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_24&domain=pdf

Updatable and Universal Common Reference Strings with Applications 699

1 Introduction

Since their introduction three decades ago, zero-knowledge proofs have been
constructed in a variety of different models. Arguably the simplest setting
is the Uniform Random String (URS) model, introduced by Blum, Feldman,
and Micali [BFM88] and used heavily since [FLS99,Dam92,SP92,KP98,SCP00,
GO14,Gro10a,GGI+15]. In the URS model both the prover and verifier have
access to a string sampled uniformly at random and it enables the prover to send
a single non-interactive zero-knowledge (NIZK) proof that convinces the verifier.
This model is limited, however, so many newer NIZK proof systems are instead in
the Common Reference String (CRS) model [CF01,Dam00,FF00,GOS12,GS12].
Here, the reference string must have some structure based on secret random coins
(e.g., be of the form Gs, Gs2

, Gs3
, . . .) and the secret (e.g., the value s) must be

discarded after generation. This makes CRS generation an inherently trusted
process.

Until recently, little consideration had been given to how to generate com-
mon reference strings in practice, and it was simply assumed that a trusted
party could be found. The introduction of zk-SNARKs (zero-knowledge Suc-
cinct Non-interactive ARguments of Knowledge) in the CRS model [Gro10b],
however, and subsequent academic and commercial usage has brought this issue
front and center. In particular, zk-SNARKs are of considerable interest for cryp-
tocurrencies given their usage in both Zcash [BCG+14], which relies on them in
order to preserve privacy, and Ethereum, which recently integrated support for
them [Buc17]. In these decentralized settings in which real monetary value is at
stake, finding a party who can be widely accepted as trusted is nearly impossible.

Ben-Sasson et al. [BCG+15] and subsequently Bowe et al. [BGG17] examined
the use of multi-party computation to generate a CRS, where only one out of n
parties needs to be honest but the participants must be selected in advance. In
concurrent work, Bowe et al. [BGM17] propose a protocol that avoids the pre-
selection requirement and as a result scales to more participants. Both protocols,
however, result in a CRS for a fixed circuit with a fixed set of participants.
This raises issues about who the participants are and how they were selected,
which are compounded by the fact that upgrades for increased performance or
functionality require a new circuit and thus a new invocation of the protocol.
This offers both renewed opportunities for adversarial subversion and loss of
faith in the integrity of the parameters. Despite multi-party CRS generation,
CRS setup (and particularly the cost it imposes on upgrading protocols), is thus
a major obstacle to the practical deployment and usage of zk-SNARKs.

Motivated by this issue of trusted setup, several works have recently exam-
ined alternatives to CRS-based pre-processing SNARKS in the URS and ran-
dom oracle model, despite the associated performance disadvantages. Cur-
rent proposed alternatives [BSBHR18,WTas+17,AHIV17,BCG+17,BCC+16,
BBB+18], either have proofs that even for modest circuit sizes, range into the
hundreds of kilobytes or have verification times that are linear in the size of
the circuit and make verification of large statements impractical for many appli-
cations. In contrast, (Quadratic Arithmetic Program) QAP-based zk-SNARKs

700 J. Groth et al.

offer quasi-constant-size proofs and verification times in the tens of millisec-
onds. Thus, modulo the barrier of having a trusted CRS setup, they are ideally
suited to applications such as blockchains where space and bandwidth are highly
constrained and proofs are expected to be verified many times in a performance-
critical process.

Our contributions. To provide a middle ground between the fully trusted and
fully subverted CRS models, we introduce and explore a new setup model for
NIZK proofs: the updatable CRS model. In the updatable CRS model, any user
can at any point choose to update the common reference string, provided that
they also prove they have done the update correctly. If the proof of correctness
verifies, then the new CRS resulting from the update can be considered trust-
worthy (i.e., uncorrupted) as long as either the old CRS or the updater was
honest. If multiple users participate in this process, then it is possible to get a
sequence of updates by different people over a period of time. If any one update
is honest at any point in the sequence, then the scheme is sound.

We introduce our model for updatable zero-knowledge proofs in Sect. 3, where
we also relate it to the classical CRS model (which we can think of as weaker)
and the models for subversion-resistant proofs [BFS16,ABLZ17] (which we can
think of as stronger).

Since Bellare et al. showed that it was impossible to achieve both subversion
soundness and even standard zero-knowledge, it follows that it is also impossible
to achieve subversion soundness and updatable zero-knowledge. With this in
mind, we next explore the space of NIZK proofs that achieve subversion zero-
knowledge (and thus updatable zero-knowledge) and updatable soundness.

We first observe that the original pairing-based zk-SNARK construction due
to Groth [Gro10b] can be made updatably sound. His construction, however, has
a quadratic-sized reference string, resulting in quadratic prover complexity. Our
positive result in Sect. 5 provides a construction of an updatable QAP-based zk-
SNARK that uses a quadratic-sized universal CRS, but allows for the derivation
of linear-sized relation-dependent CRSs (and thus linear prover complexity).
Because our universal CRS consists solely of monomials, our construction gets
around our negative result in Sect. 6, which demonstrates that it is impossible
to achieve updatable soundness for any pairing-based NIZK proof that relies
on embedding non-monomials in the reference string (e.g., uses terms Gs2+s). In
particular, this shows that QAP-based zk-SNARKs such as Pinocchio [PHGR13]
do not satisfy updatable soundness.

Applications. Updatable common reference strings are a natural model for
parameter generation in a cryptocurrency, or other blockchain-based settings.
Informally, in a blockchain, blocks of data are agreed upon by peers in a global
network according to some consensus protocol, with different blocks of data being
contributed by different users.

If each block (or one out of every n blocks) contains an update to the CRS
performed by the creator of the block, then assuming the blockchain as a whole
is correct, the CRS is sound. Indeed, we achieve a stronger property than the

Updatable and Universal Common Reference Strings with Applications 701

blockchain itself: assuming one single block was honestly generated, then the
CRS is sound even if all other blocks are generated by dishonest parties.

While updatable security thus seems to be a natural fit for blockchain-based
settings, there would be considerable work involved in making the construction
presented in this paper truly practical. As our construction is compatible with
several techniques designed to achieve efficiency (e.g., pruning of the blockchain)
and does not require replication of the entire sequence of updated CRSs in order
to perform verification, we believe this is a promising avenue for future research.

Knowledge assumptions. Our approach to proving that the updates are car-
ried out correctly is to prove the existence of a correct CRS update under a
knowledge extractor assumption. Knowledge assumptions define conditions under
which extractors can retrieve the internal ‘knowledge’ of the adversary, in this
case secret randomness used to update the CRS correctly. While less reassuring
than standard model assumptions, the security of zk-SNARKs typically rely on
knowledge assumptions anyway (and must be based on non-falsifiable assump-
tions [GW11]), and our construction is proven updatably sound under the same
assumptions as those that are used to prove standard soundness. We assume that
an adversary does not subvert our scheme by hiding a trapdoor in the groups.
Choosing such elliptic curve groups is a contentious affair [BCC+14] and outside
the scope of this paper, but one option for guaranteeing the adversary does not
implant a trapdoor is to use a deterministic group generation algorithm.

Updatable CRS vs. URS model. The updatable CRS model is closer to the URS
model than the CRS model, but it is important to acknowledge the differences.
In the URS model, given a valid proof and a URS, a verifier only needs to be
convinced that the URS was sampled at random (e.g. via a hash function in the
random oracle model). An updatable CRS, in contrast, allows a skeptical verifier
to trust proofs made with respect to a CRS that they themselves updated (or
contributed to via a previous update). This is a weaker property than the URS
model, as it cannot help with proofs formed before this update. On the other
hand, updatable CRS schemes inherit the efficiency and expressiveness of the
CRS model, without fully inheriting its reliance on a trusted setup.

2 Related Work

In addition to the works referenced in the introduction, we compare here with
the research most closely related to our own.

In terms of acknowledging the potential for an adversary to compromise the
CRS, Bellare, Fuchsbauer and Scafuro [BFS16] ask what security can be main-
tained for NIZK proofs when the CRS is subverted. They formalise the different
notions of subversion resistance and then investigate their possibility. Using sim-
ilar techniques to Goldreich et al. [GOP94], they show that soundness in this set-
ting cannot be achieved at the same time as (standard) zero-knowledge. Building
on the notions of Bellare et al., two recent papers [ABLZ17,Fuc17] discuss how to

702 J. Groth et al.

Table 1. Comparison for pairing-based zk-SNARKs for boolean and arithmetic circuit
satisfiability with �-element known circuit inputs, m wires, and n gates, of which n×
are multiplication gates. G means group elements in either source group, Ex means
group exponentiations, MG means group multiplications, and P means pairings.

Scheme Universal CRS Circuit CRS Size Prover comp Verifier comp

[Gro10b] (F2) O(n2) G — 42 G O(n2) Ex 36P + nMG
[PHGR13] (Fq) — O(n× + m − �) G 8 G O(n× + m − �) Ex 12P + � Ex
[Gro16] (Fq) — O(n× + m) G 3 G O(n× + m − �) Ex 3P + � Ex

This work (Fq) O(n2
×) G O(n× + m − �) G 3 G O(n× + m − �) Ex 5P + � Ex

achieve subversion zero-knowledge for zk-SNARKs. None of these schemes, how-
ever, can avoid the impossibility result and they do not simultaneously preserve
soundness and zero-knowledge under subversion.

The multi-string model by Groth and Ostrovsky [GO14] addresses the prob-
lem of subversion by designing protocols that require only the majority of the
parties contributing multiple reference strings to be honest. Their construction
gives statistically sound proofs but they are of linear size in both the number of
reference strings and the size of the instance.

In terms of zk-SNARKs, some of the most efficient constructions in the liter-
ature [Lip13,PHGR13,BCTV14,DFGK14,Gro16,GM17] use the quadratic span
program (QSP) or quadratic arithmetic program (QAP) approach of Gennaro
et al. [GGPR13]. The issue with this approach when it comes to updatability
is that it requires embedding arbitrary polynomials in the exponents of group
elements in the common reference string. However, we show in Sect. 6 that if it is
possible to update these polynomial embeddings, then it is possible to compute
all the constituent monomials in the polynomials. Uncovering the underlying
monomials, however, would completely break those zk-SNARKs, so QSP-based
and QAP-based updatable zk-SNARKs require a fundamentally new technique.

Two early zk-SNARKs by Groth [Gro10b] and Lipmaa [Lip12] do, however,
use only monomials. The main drawback of [Gro10b] is that it has a quadratic-
sized CRS and quadratic prover computation, but it has a CRS that consists
solely of monomials, and thus is updatable. Lipmaa still has quadratic prover
computation, however he suggested the use of progression-free sets to construct
NIZK arguments with a CRS consisting of n(1+o(1)) group elements. It uses
progression-free sets to give an elegant product argument and a permutation
argument, which are then combined to give a circuit satisfiability argument.

We give a performance comparison of pairing-based zk-SNARKs in Table 1,
comparing the relative size of the CRS and the proof, and the computation
required for the prover and verifier. We compare Groth’s original zk-SNARK,
two representative QAP-based zk-SNARKs, and our updatable and specializable
QAP-based zk-SNARK. As can be seen, our efficiency is comparable to the QAP-
based schemes, but our universal reference string is not restricted to proving
a pre-specified circuit. For the QAP-based SNARKs one could use Valiant’s

Updatable and Universal Common Reference Strings with Applications 703

universal circuit construction [Val76,LMS16] to achieve universality but this
would introduce a log n multiplicative overhead.We pose as an interesting open
question whether updatable zk-SNARKs with a shorter universal CRS exist.

In concurrent work, Bowe et al. [BGM17] propose a two-phase protocol for the
generation of a zk-SNARK reference string that is player-replaceable [GHM+17].
Like our protocol, the first phase of their protocol also computes monomials with
parties operating in a similar one-shot fashion. However, there are several differ-
ences. First, their protocol does so under the stronger assumption of a random
oracle, whereas we prove the security of our updatable zk-SNARK directly under
the same assumptions as a trusted setup zk-SNARK. More significantly, to cre-
ate a full CRS which does not have quadratic prover time, Bowe et al. require a
second phase. As one party in each phase must be honest and the second phase
depends on the first, the final CRS is not updatable. There is no way to increase
the number of parties in the first phase after the second phase has started and,
restarting the first phase means discarding the participants in the second phase.
As a result, the protocol is still a multi-party computation to produce a fixed
CRS with a fixed set of participants, albeit with the set of participants fixed
midway through the protocol instead of at the start. In contrast, we produce a
CRS with linear overhead from a quadratic-sized universal updatable CRS via
an untrusted specialization process. Thus our CRS can be continuously updated
without discarding past participation.

3 Defining Updatable and Universal CRS Schemes

In this section, we begin by presenting some notation and revisiting the basic def-
initions of non-interactive zero-knowledge proofs in the common reference string
model, in which the reference string must be run by a trusted third party. We
then present our new definitions for an updatable CRS scheme, which relaxes the
CRS model by allowing the adversary to either fully generate the reference string
itself, or at least contribute to its computation as one of the parties perform-
ing updates. In this our model is related to subversion-resistant proofs [BFS16],
which we also present and compare to our own model.

3.1 Notation

If x is a binary string then |x| denotes its bit length. If S is a finite set then

|S| denotes its size and x
$←− S denotes sampling a member uniformly from S

and assigning it to x. We use λ ∈ N to denote the security parameter and 1λ to
denote its unary representation. We use ε to denote the empty string.

Algorithms are randomized unless explicitly noted otherwise. “PPT” stands
for “probabilistic polynomial time” and “DPT” stands for “deterministic poly-
nomial time.” We use y ← A(x; r) to denote running algorithm A on inputs

x and random coins r and assigning its output to y. We write y
$←− A(x) or

y
r←− A(x) (when we want to refer to r later on) to denote y ← A(x; r) for r

sampled uniformly at random. A.rt(λ), and sample r
$←− {0, 1}A.rl(λ).

704 J. Groth et al.

We use code-based games in security definitions and proofs [BR06]. A game
SecA(λ), played with respect to a security notion Sec and adversary A, has
a main procedure whose output is the output of the game. The notation
Pr[SecA(λ)] is used to denote the probability that this output is 1.

3.2 NIZK Proofs in the CRS Model

Let Setup be a setup algorithm that takes as input a security parameter 1λ

and outputs a common reference string crs sampled from some distribution
D. Let R be a polynomial time decidable relation with triples (crs, φ, w). We
say w is a witness to the instance φ being in the relation defined by crs when
(crs, φ, w) ∈ R.

Non-interactive zero-knowledge (NIZK) proofs and arguments in the CRS
model are comprised of three algorithms (Setup,Prove,Verify), and satisfy com-
pleteness, zero-knowledge, and (knowledge) soundness. Perfect completeness

requires that for all reference strings output by setup crs
$←− Setup(1λ), when-

ever (crs, φ, w) ∈ R we have that Verify(crs, φ,Prove(crs, φ, w)) = 1. Soundness
requires that an adversary cannot output a proof that verifies with respect to
an instance not in the language, and knowledge soundness goes a step further
and for any prover producing a valid proof there is an extractor X that can
extract a valid witness. Finally, zero knowledge requires that there exists a pair
(SimSetup,SimProve) such that an adversary cannot tell if it is given an honest
CRS and honest proofs, or a simulated CRS and simulated proofs (in which
the simulator does not have access to the witness, but does have a simulation
trapdoor). We present these notions more formally below.

3.3 Updating Common Reference Strings

In our definitions we relax the CRS model by allowing the adversary to either
fully generate the reference string itself, or at least contribute to its computation
as one of the parties performing updates. Informally, we can think of this as
having the adversary interact with the Setup algorithm. More formally, we can
define an updatable CRS scheme that consists of PPT algorithms Setup,Update
and a DPT algorithm VerifyCRS that behave as follows:

– (crs, ρ) $←− Setup(1λ) takes as input the security parameter and returns a
common reference string and a proof of correctness.

– (crs′, ρ′) $←− Update(1λ, crs, (ρi)n
i=1) takes as input the security parameter, a

common reference string, and a list of update proofs for the common reference
string. It outputs an updated common reference string and a proof of the
correctness of the update.

– b ← VerifyCRS(1λ, crs, (ρi)n
i=1) takes as input the security parameter, a com-

mon reference string, and a list of proofs. It outputs a bit indicating accep-
tance, b = 1, or rejection b = 0.

Updatable and Universal Common Reference Strings with Applications 705

Definition 1. An updatable CRS scheme is perfectly correct if

– for all (crs, ρ) $←− Setup(1λ) we have VerifyCRS(1λ, crs, ρ) = 1;
– for all (λ, crs, (ρi)n

i=1) such that VerifyCRS(1λ, crs, (ρ)n
i=1) = 1 we have for

(crs′, ρn+1)
$←− Update(1λ, crs, (ρi)n

i=1) that VerifyCRS(1λ, crs′, (ρ)n+1
i=1) = 1.

Please observe that a standard trusted setup is a special case of an updatable
setup with ρ = ε as the update proof where the verification algorithm accepts
anything. For a subversion-resistant setup the proof ρ can be considered as extra
elements included in the CRS solely to make the CRS verifiable.

3.4 Security Properties

We recall the notions of zero-knowledge, soundness, and knowledge soundness
associated with NIZK proof systems. In addition to considering the standard
setting with a trusted reference string, we also capture the subversion-resistant
setting, in which the adversary generates the reference string [BFS16,ABLZ17,
Fuc17], and introduce our new updatable reference string setting.

For each security property, the game in the left column of Fig. 1 resembles the
usual security game for zero-knowledge, soundness, and knowledge soundness.
The difference is in the creation of the CRS crs, which is initially set to ⊥. We
then model the process of generating the CRS as an interaction between the
adversary and a setup oracle Os, at the end of which the oracle sets this value
crs and returns it to the adversary.

In principle, this process of creating the CRS can look like anything: it could
be trusted, or even a more general MPC protocol. For the sake of this paper,
however, we focus on three types of setup: (1) a trusted setup (T) where the
setup generator ignores the adversary when generating crs; (2) a subvertible
setup (S) where the setup generator gets crs from the adversary and uses it
after checking that it is well formed; and (3) a model in between that we call an
updatable setup (U). In this new model, an adversary can adaptively generate
sequences of CRSs and arbitrarily interleave its own malicious updates into them.
The only constraints on the final CRS are that it is well formed and that at least
one honest participant has contributed to it by providing an update.

In the definition of zero-knowledge, we require the existence of a PPT simu-
lator consisting of algorithms (SimSetup,SimUpdate,SimProve) that share state
with each other. The idea is that it can be used to simulate the generation of
common reference strings and simulate proofs without knowing the correspond-
ing witnesses.

Definition 2. Let P = (Setup,Update,VerifyCRS,Prove,Verify) be a non-
interactive argument for the relation R. Then the argument is X-secure, for
X ∈ {T,U,S}, if it satisfies each of the following:

– P is complete, if for all PPT algorithms A the advantage |1−Pr[COMPA(λ)]|
is negligible in λ.

706 J. Groth et al.

main COMPA(λ)
(crs, (ρi)n

i=1, φ, w) ← A(1λ)
b ← VerifyCRS(1λ, crs, (ρi)n

i=1)
if b = 0 or (crs, φ, w) /∈ R return 1

π
$←− Prove(crs, φ, w)

return Verify(crs, φ, π)

main X-ZKA,SimA(λ)

b
$←− {0, 1}

if b = 0
Setup ← SimSetup
Update ← SimUpdate

crs ← ⊥; Q ← ∅
state ← r←− AX-Os(1λ)

b′ $←− AOpf (state)
return 1 if b′ = b else return 0

Opf(φ, w)
if (crs, φ, w) �∈ R return ⊥
if b = 0 return SimProveA(crs, r, φ)
else return Prove(crs, φ, w)

main X-SNDA(λ)
crs ← ⊥; Q ← ∅
(φ, π) $←− AX-Os(1λ)
return Verify(crs, φ, π) ∧ φ �∈ LR

main X-KSNDA,XA(λ)
crs ← ⊥, Q ← ∅
(φ, π) r←− AX-Os(1λ)

w
$←− XA(crs, r)

return Verify(crs, φ, π) ∧ (φ, w) �∈ R

T-Os(x)
if crs �= ⊥ return ⊥
(crs, ρ) $←− Setup(1λ)
return (crs, ρ)

U-Os(intent, crsn, (ρi)n
i=1)

if crs �= ⊥ return ⊥
if intent = setup

(crs1, ρ1)
$←− Setup(1λ)

Q ← {ρ1}
return (crs1, ρ1)

if intent = update
b ← VerifyCRS(1λ, crsn, (ρi)n

i=1) = 0
if b = 0 return ⊥
(crs′, ρ′) $←− Update(1λ, crsn, (ρi)n

i=1)
Q ← Q ∪ { ρ′}
return (crs′, ρ′)

if intent = final
b ← VerifyCRS(1λ, crsn, (ρi)n

i=1)
if b = 0 or Q ∩ { ρi}i = ∅ return ⊥
set crs ← crsn and return crs

else return ⊥

S-Os(crsn, (ρi)n
i=1)

if crs �= ⊥ return ⊥
b ← VerifyCRS(1λ, crsn, (ρi)n

i=1) = 0
if b = 0 return ⊥
set crs ← crsn and return crs

Fig. 1. The left games define completeness, zero-knowledge (X-ZK), soundness
(X-SND), and knowledge soundness (X-KSND). The right oracles define the notions
X ∈ {T,U, S}; i.e., trusted, updatable, and subvertible CRS setups. A complete game
is constructed by using an oracle from the right side in the game on the left side.

Updatable and Universal Common Reference Strings with Applications 707

– P is X-zero-knowledge, if for all PPT algorithms A there exists a sim-
ulator SimA = (SimSetup,SimUpdate,SimProveA) where the advantage
|2Pr[X-ZKA,SimA(1λ) = 1] − 1| is negligible in λ.

– P is X-sound if for all PPT algorithms A the probability Pr[X-SNDA(1λ) = 1]
is negligible in λ.

– P is X-knowledge-sound if for all PPT algorithms A there exists a PPT extrac-
tor XA such that the probability |Pr[X-KSNDA,XA(1λ)| is negligible in λ.

Moreover, if a definition holds with respect to an adversary with unbounded com-
putation, we say it holds statistically, and if the advantage is exactly 0, we say
it holds perfectly.

One of the main benefits of our model is its flexibility. For example, a slightly
weaker but still trusted setup could be defined that would allow the adversary
to pick some parameters (e.g., the number of gates in an arithmetic circuit or a
specific finite field) and then run the setup on those. In addition to different types
of setup assumptions, it also would be easy to incorporate additional security
notions into this framework, such as simulation soundness.

Our definition of subversion-resistant security is adapted from that of Abdol-
maleki et al. [ABLZ17], and our definition of update security is itself adapted
from this definition. We stress that this new notion of setup security is nec-
essary: while we prove that our construction in Sect. 5 satisfies subversion
zero-knowledge, this is known to be mutually exclusive with subversion sound-
ness [BFS16], so update security provides the middle ground in which we can
obtain positive results. In terms of relating these notions, it is fairly straight-
forward that updatable security implies trusted security, and that subversion-
resistant security implies updatable security (for all security notions).

The proofs for the following lemmas are included in the full version of the
paper [GKM+18].

Lemma 1. A proof system that satisfies a security notion with updatable setup
also satisfies the security notion with trusted setup.

Lemma 2. A proof system that satisfies a security notion with subvertible setup
also satisfies the security notion with updatable setup.

3.5 Specializing Common Reference Strings

Consider a CRS for a universal relation that can be used to prove any arith-
metic circuit is satisfiable. Instances of the relation specify both wiring and
inputs freely. For a specific arithmetic circuit it is desirable to use the large CRS
to derive a smaller circuit-specific CRS for a relation with fixed wiring but flex-
ible inputs, as this might lead to more efficient prover and verifier algorithms.
This can be seen as a form of pre-computation on the large CRS to get better
efficiency, but there are conceptual advantages in giving the notion a name so in
the following we formalize the idea of specializing a universal CRS.

708 J. Groth et al.

Let Φ be a DPT decidable set of relations, with each relation Rφ ∈ Φ being
itself DPT decidable. The universal relation R for Φ defines a language with
instances φ = (Rφ, u) such that ((Rφ, u), w) ∈ R if and only if Rφ ∈ Φ and
(u,w) ∈ Rφ. We say that a setup generates specializable universal reference
strings crs for R if there exists a DPT algorithm crsRφ

← Derive�(crs, Rφ)
and algorithms Prove and Verify can be defined in terms of algorithms π ←
Prove�(crsRφ

, u, w) and b ← Verify�(crsRφ
, u, π) as follows:

– Prove(crs, φ, w) parses φ = (Rφ, u), asserts Rφ ∈ Φ, derives crsRφ
←

Derive�(crs, Rφ), and returns the proof generated by Prove�(crsRφ
, u, w).

– Verify(crs, φ, π) first parses φ = (Rφ, u), checks Rφ ∈ Φ, derives crsRφ
←

Derive�(crs, Rφ), and returns Verify�(crsRφ
, u, π).

Existing zk-SNARKs for boolean and arithmetic circuit verification have dif-
ferent degrees of universality. Groth [Gro10b] is universal and works for any
boolean circuit, i.e., the wiring of the circuit can be specified in the instance,
while subsequent SNARKs such as [GGPR13] and descendants have reference
strings that are for circuits with fixed wiring.

Schemes with specializable CRS derivation aim to achieve the generality of
the former and the performance of the latter. As the Derive algorithm operates
only on public information, it can be executed by protocol participants whenever
necessary. This has two advantages. First, one can transform any attack against
a prover and verifier employing a specialized CRS into an attack on the universal
CRS and we thus do not need any special security notions. Second, it makes it
easier to design efficient updatable schemes as being able to update the universal
CRS that does not yet have a relation-dependent structure and publicly derive
an efficient circuit-specific CRS after the update. We will exploit this in the
second half of the paper, where we present an updatable zk-SNARK that avoids
our own impossibility result in Sect. 6. We will employ a quadratic-size CRS that
is universal for all QAPs, but then specialize it to obtain a linear-size CRS and
linear-time prover computation.

4 Background

Let G(1λ) be a DPT1 bilinear group generator that given the security parameter
1λ produces bilinear group parameters bp = (p,G1,G2,GT , e,G,H). G1,G2,GT

are groups of prime order p with generators G ∈ G1, H ∈ G2 and e : G1 ×G2 →
GT is a non-degenerative bilinear map, which means e(Ga,Hb) = e(G,H)ab and
e(G,H) generates GT .

1 Often the cryptographic literature allows for probabilistic bilinear group generation,
but for our purpose it is useful to have deterministic parameter generation that
cannot be influenced by the adversary.

Updatable and Universal Common Reference Strings with Applications 709

4.1 Knowledge and Computational Assumptions

The knowledge-of-exponent assumption (KEA) introduced by Damg̊ard [Dam91]
says that given G, Ĝ = Gα it is infeasible to create C, Ĉ such that Ĉ = Cα

without knowing an exponent c such that C = Gc and Ĉ = Ĝc. Bellare and
Palacio [BP04] extended this to the KEA3 assumption, which says that given
G,Gα, Gs, Gαs it is infeasible to create C,Cα without knowing c0, c1 such that
C = Gc0(Gs)c1 . This assumption has been used also in symmetric bilinear groups
by Abe and Fehr [AF07], who called it the extended knowledge-of-exponent
assumption.

The bilinear knowledge of exponent assumption (B-KEA), which Abdolmaleki
et al. [ABLZ17] refer to as the BDH-KE assumption, generalizes further to
asymmetric groups. It states that it is infeasible to compute C, Ĉ such that
e(C, Ĝ) = e(G, Ĉ) without knowing s such that (C, Ĉ) = (Gs, Ĝs). It corre-
sponds to the special case of q = 0 of the q-power knowledge of exponent (q-PKE)
assumption in asymmetric bilinear groups introduced by Groth [Gro10b].

We introduce the q-monomial knowledge assumption, as a generalization of q-
PKE to multi-variate monomials. We note that our construction in Sect. 5 could
be made uni-variate by employing higher powers which would allow the use of
the ungeneralised q-PKE assumption.

Assumption 1 (The q(λ)-Monomial Knowledge Assumption (q(λ)-
MK)). Let a = {ai(X)}na

i=1 and b = {ai(X)}nb
i=1 be sets of n-variate mono-

mials with the degree, the number of monomials na, nb, and the number of
variables n all bounded by q(λ). Let A be an adversary and XA be an extrac-
tor. Define the advantage AdvMK

G,q(λ),a,b,A,XA(λ) = Pr[MKG,q(λ),a,b,A,XA(λ)] where
MKG,q(λ),a,b,A,XA is defined as

main MKG,q(λ),a,b,A,XA(λ)
bp = (p,G1,G2,GT , e,G,H) ← G(1λ)

x
$←− F

s
p

(Ga,Hb) r←− A(bp, {Gai(x)}n1
i=1, {Hbi(x)}n2

i=1)
(c0, c1, . . . , cnb

) ← XA(bp, {Gai(x)}n1
i=1, {Hbi(x)}n2

i=1; r)
return a = b and b �= c0 +

∑
i ci · bi(x)

The MK assumption holds relative to G if for all PPT adversaries A there exists
a PPT extractor XA such that AdvMK

G,q(λ),a,b,A,XA(λ) is negligible in λ.

The following multi-variate computational assumption is closely related
to the uni-variate q-bilinear gap assumption of Ghadafi and Groth [GG17]
and is implied by the computational polynomial assumption of Groth and
Maller [GM17].

Assumption 2 (The q(λ)-Monomial Computational Assumption (q(λ)-
MC)). Let a = {ai(X)}na

i=1 and b = {ai(X)}nb
i=1 be sets of n variate monomials

with the degree, the number of monomials na, nb, and the number of variables
n all bounded by q(λ). Let A be a PPT algorithm, and define the advantage
AdvMC

G,q(λ),a,b,A(λ) = Pr[MCG,q(λ),a,b,A(λ)] where MCG,q(λ),a,b,A is defined as

710 J. Groth et al.

main MCG,q(λ),a,b,A(λ)
bp = (p,G1,G2,GT , e,G,H) ← G(1λ)
x ← F

n
p

(A, a(X)) ← A(bp, {Gai(x)}n1
i=1, {Hbi(x}n2

i=1)
return 1 if A = Ga(x) and a(X) /∈ span{1, a1(X), . . . , an1(X)}
else return 0

The MC assumption holds relative to G if for all PPT adversaries A we have
AdvMC

G,q(λ),a,b,A(λ) is negligible in λ.

4.2 A QAP-Based zk-SNARK Recipe

Here we describe a generalised approach for using Quadratic Arithmetic Pro-
grams (QAPs) to construct a SNARK scheme for arithmetic circuit satisfiability.
A similar approach can be used with Quadratic Span Programs (QSPs). In both
cases, zero-knowledge is obtained by ensuring that all of the commitments are
randomised. We show in Sect. 6 that the recipe is unlikely to directly lead to
updatable zk-SNARKs. However, by modifying the recipe in Sect. 5 we are able
to construct updatable zk-SNARKs.

Arithmetic Circuits: Arithmetic circuits are a means to describe compu-
tations that consist solely of field additions and multiplications. We will now
describe an arithmetic circuit over a field F with n multiplication gates and m
wires. Such a circuit consists of gates connected together by wires. The gates
specify an operation (either addition or multiplication) and the wires contain
values in F. Each gate has a left input wire and a right input wire leading into
it, and an output wire leading from it. The circuit can have split wires i.e. the
same wire leads into multiple gates. The circuit is satisfied if for every gate, the
operation applied to the input wires is equal to the output wire.

Any NP relation can be described with a family of arithmetic circuits that
decide which statement and witness pairs are included. In a relation described
by an arithmetic circuit, an instance is defined by a value assignment to � fixed
input wires. The witness is the values of the remaining m − � wires such that
the arithmetic circuit is satisfied.

Fix the circuit: We label the n gates with unique distinct values r1, . . . , rn ∈ F.
We will convert the arithmetic circuit into equations over polynomials, and these
values will serve as points on which formal polynomials representing the circuit
will be evaluated.

Describe all m wires using three sets of m polynomials with degree at most
n − 1. These polynomials determine for which gates each wire behaves as a left
input wire, a right input wire, and an output wire. They also determine whether
the wires have been split, and whether there are any additions before a wire is
fed into a multiplication gate. The three sets of polynomials are: U = {ui(X)}m

i=0

describes the left input wires; V = {vi(X)}m
i=0 describes the right input wires;

Updatable and Universal Common Reference Strings with Applications 711

and W = {wi(X)}m
i=0 describes the output wires. We will throughout the paper

fix u0(X) = v0(X) = w0(X) = 1. The polynomials are designed such that they
are equal to 1 at each of the values of the multiplication gates which they lead
into/ out of and 0 at all other gate values.

Commit to wire values: Suppose there are m wires with values (a1, . . . , am)
and that the witness wires run from {�+1, . . . , m}. The common reference string
includes the values

{Gui(x), Gvi(x), Gwi(x)}m
i=�+1

for some x chosen at random. The commitment to the left input, right, and
output wires will include the values

CL = G
∑m

i=�+1 aiui(x), CR = G
∑m

i=�+1 aivi(x), CO = G
∑m

i=�+1 aiwi(x).

Prove that repeated wires are consistent: If a wire is split into two left
inputs, there is no need to do anything because of the design of the wire poly-
nomials. However, it is necessary to check that split wires that split into at least
one left input wire and at least one right input wire are consistent. This is done
by including terms in the common reference string of the form

{
Gαuui(x)+αvvi(x)

}m

i=�+1

for some unknown αu, αv, and then requiring the prover to provide an element
Y such that αuCL + αvCR = Y . For some schemes α0 = α1.

Prove that output wires are consistent with input wires: This can be
done together with proving consistency of repeated wires. The common reference
string includes terms of the form

{
Gαuui(x)+αvvi(x)+αwwi(x)

}m

i=�+1

for some unknown αu, αv, αw. The prover is required to provide an element Y
such that αuCL + αvCR + αwCO = Y .

Prove the commitments are well formed: There are values in the common
reference string that should not be included in the commitments generated by
the prover, such as the {aiui(x)}�

i=1 values related to the instance. This can be
checked using the same approach as descried above for the consistency proof.

Prove that gates are evaluated correctly: Determine a quadratic poly-
nomial equation that checks that the gates are evaluated correctly. There is a
unique degree n polynomial t(X) which is equal to 0 at each of the gate values
(r1, . . . , rn). Suppose that a1, . . . , am are the wire values. Then

712 J. Groth et al.

(
m∑

i=0

aiui(X)

)

·
(

m∑

i=0

aivi(X)

)

−
m∑

i=0

aiwi(X)

is equal to 0 when evaluated at the gate values if and only if the multiplication
gates are evaluated correctly. This polynomial expressions shares its zeros with
t(X), which means that t(X) divides it. Hence the prover is required to show
that at the unknown point x,

(
G

∑�
i=0 aiui(x)CL

)
⊗

(
G

∑�
i=0 aivi(x)CR

)
= Gt(x)+

∑�
i=0 aiwi(x)CO

for ⊗ a function that finds the product of the values inside the two encodings.

5 An Updatable QAP-Based zk-SNARK

In this section we give a construction for an updatable QAP-based zk-SNARK
that makes use of a universal reference string. We then prove it satisfies subver-
sion zero knowledge and updatable knowledge soundness under the knowledge-
of-exponent assumptions introduced in Sect. 4.

We let the security parameter 1λ (deterministically) determine parameters
(d,m, �, bp), where bp = (p,G1,G2,GT , e,G,H), with G1,G2,GT groups of prime
order p with generators G ∈ G1, H ∈ G2 and e : G1 × G2 → GT a non-
degenerative bilinear map. Here d is the degree of the QAP, m is number of
input variables, out of which � are part of the instance formed of public field
elements to a QAP.

Recall from Sect. 4.2, a QAP for the given parameters is defined by polynomi-
als {ui(x), vi(x), wi(x)}m

i=0 of degree less than d, and t(x) of degree d. The QAP
defines a relation RQAP containing pairs of instances and witnesses (a1, . . . , a�)
and (a�+1, . . . , am) such that, with a0 = 1,
(

u0(x) +
m∑

i=1

aiui(x)

)

·
(

v0(x) +
m∑

i=1

aivi(x)

)

≡ w0(x) +
m∑

i=1

aiwi(x) mod t(x).

The sequence of parameters indexed by the security parameter define a uni-
versal relation R consisting of all pairs of QAPs and instances as described above
that have a matching witness. In the notation from Sect. 3.5 let Φ be all possible
QAPs for the parameters, then the universal relation R for Φ contains instances
φ = (RQAP, u = (a1, . . . , a�)), with matching witnesses w = (a�+1, . . . , am).

5.1 Reworking the QAP Recipe

Our final scheme is formally given in Figs. 2 and 3. In this section we describe
some of the technical ideas behind it. Due to our impossibility result in Sect. 6,
many of the usual tricks behind the QAP-based approach are not available to
us, which means we need something new. To obtain this we first switch to a
multi-variate scheme, where the proof elements need to satisfy equations in the

Updatable and Universal Common Reference Strings with Applications 713

indeterminates X, Y , Z. We can then prove the well-formedness of our proof
elements using a subspace argument for our chosen sums of witness QAP poly-
nomials. Once we have that the proof elements are well formed, we show that
the exponents of two of them multiply to get an exponent in the third proof
element such that (1) the sum of all the terms where Y has given power j is
equal to the QAP expression in the X indeterminate, and (2) the value Y j is
not given in the universal CRS. For our final scheme, we use j = 7.

Fix the circuit: The circuit need only be fixed upon running the CRS derivation
algorithm. At this point, the circuit is described as a QAP like that described
in Sect. 4; i.e., for a0 = 1, the field elements (a1, . . . , am) ∈ RQAP if and only if

(
m∑

i=0

aiui(X)

)

·
(

m∑

i=0

aivi(X)

)

=
m∑

i=0

aiwi(X) + q(X)t(X)

for some degree (d − 2) polynomial q(X).

Prove the commitments are well formed: In our scheme an honest prover outputs
group elements (A,B,C) such that

log(A) = log(B) = q(x)y +
m∑

i=0

ai(wi(x)y2 + ui(x)y3 + vi(x)y4) − y5 − t(x)y6.

Ensuring that log(A) = log(B) can be achieved with a pairing equation of the
form e(A,H) = e(G,B). Thus we need to show only that A is of the correct
form.

Usually, as described in Sect. 4, this is done by encoding only certain polyno-
mials in the CRS and forcing computation to use linear combinations of elements
in the CRS. Since we cannot do this and allow updates, we instead construct
a new subspace argument. First we subtract out the known elements in the
instance using a group element S which the verifier computes in order to obtain
a new group element with the exponent

q(x)y +
m∑

i=�+1

ai(wi(x)y2 + ui(x)y3 + vi(x)y4).

Set M be the (m + d − �) × 4d matrix that contains the coefficients of
{(wi(x)y2 + ui(x)y3 + vi(x)y4)}m

i=�+1, {xiy}d−1
i=0 with respect to monomials

{xiyj}(d−1,4)
(i,j)=(0,1). We denote these coefficients by ml(x, y) =

∑
i,j Ml,(i,j) · xiyj ,

e.g., m1(x, y) =
(
w�+1(x)y2 + u�+1(x)y3 + v�+1(x)y4

)
. Then we set the corre-

sponding null-matrix be N such that MN = 0. We address the rows of N
by the corresponding monomial degrees in M . The columns of this matrix
defines polynomials nk(x, y) =

∑
i,j N(i,j),k · xd−iy4−j , such that in the con-

volution of ml(x, y) · nk(x, y) the (d, 4) degree terms disappear. If we introduce
the variable z, and set N̂ = H

∑
k nk(x,y)zk

, then the pairing e(AS, N̂) yields

714 J. Groth et al.

a target group element with 0 coefficients for all xdy4zk terms exactly when
A is chosen from the right subspace. Thus, given a CRS that does not con-
tain any xdy4zk terms for k > 1, and a verification equation that checks that,
(log A+ log S) · log(N̂) = log C1 the prover can only compute the component C1

if A is correctly formed.

Prove that the QAP is satisfied: Assuming that A and B are of the correct form,
we have that log(A) · log(B) is equal to

(

q(x)y +
m∑

i=0

ai(wi(x)y2 + ui(x)y3 + vi(x)y4) − y5 − t(x)y6

)2

.

which, for terms involving y7, yields

t(x)q(x) −
m∑

i=0

aiwi(x) +

(
m∑

i=0

aiui(X)

)

·
(

m∑

i=0

aivi(X)

)

.

The terms in other powers of y can be considered as computable garbage and
are cancelled out in other proof components. The equation above is satisfied for
some polynomial q(X) if and only if the QAP is satisfied. Thus, given a CRS
that does not contain any y7 terms, and a verification equation that checks that,
log A · log B = log C2 we ensure that the proof element C2 is computable if and
only if the QAP is satisfied.

Remark 1. It is always possible to make everything univariate in x by choosing
y, z as suitable powers of x, but we find it conceptually easier and more readable
to give them different names.

Derivation of a Linear Common Reference String: Astute readers may
note that these techniques require the CRS to have quadratic set of monominals
in order to compute the null matrix. We resolve this by providing an untrusted
derive function which can be seen as a form of precomputation in order to find
the linear common reference string for a fixed relation. Using the linear common
reference string, our prover also makes a linear number of group exponentiations
in the circuit size.

5.2 Updatability of the Universal Common Reference String

In this section we describe the universal common reference string and how to
update it. We then prove that for any adversary that computes a valid common
reference string, either through setup or through updates, we can extract the
randomness it used. In Sect. 5.3, we show that – for our construction – proving
security for an adversary that makes one update to a freshly generated CRS is
equivalent to proving the full version of updatable security, in which an adversary
makes all but one update in the sequence.

Updatable and Universal Common Reference Strings with Applications 715

Setup(1λ)

x, y, z
$←− F

∗
p; ρ ← (Gx, Gy, Gz, Gx, Gy, Gz, Hx, Hy, Hz)

crs ←
(

G, Gx, Gz, {Gxiyj }2d,12
i=0,j=1,j �=7, {Gxiyjzk}2d,6,3d

i=0,j=1,k=1,(i,j) �=(d,4),

{Gxiyjz6d}d,4
i=0,j=1 H, Hx,{Hxiyj }d,6

i=0,j=1,{Hxiyjzk}d,2,3d
i=0,j=0,k=1, Hz6d

)

Update(1λ, crs, {ρi}n
i=1)

parse

⎛
⎜⎝

G, G1,0,0, G0,0,1, {Gi,j,0}2d,12
i=0,j=1,j �=7,

{Gi,j,k}2d,6,3d
i=0,j=1,k=1,(i,j) �=(d,4), {Gi,j,6d}d,4

i=0,j=1

H, H1,0,0,{Hi,j,0}d,6
i=0,j=1,{Hi,j,k}d,2,3d

i=0,j=0,k=1, H0,0,6d

⎞
⎟⎠ ← crs

α, β, γ
$←− F

∗
p

crs′ ←

⎛
⎜⎜⎝

G, Gα
1,0,0, Gγ

0,0,1, {Gαiβj

i,j,0 }2d,12
i=0,j=1,j �=7, {Gαiβjγk

i,j,k }2d,6,3d
i=0,j=1,k=1,(i,j) �=(d,4),

{Gαiβjγ6d

i,j,6d }d,4
i=0,j=1, H, Hα

1,0,0,{Hαiβj

i,j,0 }d,6
i=0,j=1,{Hαiβjγk

i,j,k }d,2,3d
i=0,j=0,k=1,

Hγ6d

0,0,6d

⎞
⎟⎟⎠

ρ ← (Gα
1,0,0, G

β
0,1,0, G

γ
0,0,1, G

α, Gβ , Gγ , Hα, Hβ , Hγ)

VerifyCRS(1λ, crs, {ρi}n
i=1)

parse

⎛
⎜⎝

G, G1,0,0, G0,0,1, {Gi,j,0}2d,12
i=0,j=1,j �=7,

{Gi,j,k}2d,6,3d
i=0,j=1,k=1,(i,j) �=(d,4), {Gi,j,6d}d,4

i=0,j=1 H,

H1,0,0,{Hi,j,0}d,6
i=0,j=1,{Hi,j,k}d,2,3d

i=0,j=0,k=1 ,H0,0,6d

⎞
⎟⎠ ← crs

parse {(Ai, Bi, Ci, Āi, B̄i, C̄i, Âi, B̂i, Ĉi)}n
i=1 ← {ρ}n

i=1

assert the proofs are correct:
A1 = Ā1, B1 = B̄1, C1 = C̄1

for 2 ≤ i ≤ n : e(Ai, H) = e(Ai−1, Âi)
∧ e(Bi, H) = e(Bi−1, B̂i) ∧ e(Ci, H) = e(Ci−1, Ĉi)

e(Ān, H) = e(G, Ân) ∧ e(B̄n, H) = e(G, B̂n) ∧ e(C̄n, H) = e(G, Ĉn)
An = G1,0,0 �= 1 ∧ Bn = G0,1,0 �= 1 ∧ Cn = G0,0,1 �= 1

assert the exponents supposed to be yj are correct:
for 1 ≤ j ≤ 6 : e(G0,j,0, H) = e(G, H0,j,0)
for 1 ≤ j ≤ 5 : e(G, H0,j+1,0) = e(G0,1,0, H0,j,0)
for 8 ≤ j ≤ 12 : e(G0,j,0, H) = e(G0,6,0, H0,j−6,0)

assert the exponents supposed to be xiyj are correct:
e(G1,0,0, H) = e(G, H1,0,0)
for 1 ≤ i ≤ d, 1 ≤ j ≤ 6, 8 ≤ j ≤ 12 : e(Gi,j,0, H) = e(Gi−1,j,0, H1,0,0)
for 1 ≤ i ≤ d, 1 ≤ j ≤ 6 : e(Gi,j,0, H) = e(G, Hi,j,0)

assert the exponents supposed to be xiyjzk are correct:
e(G0,0,1, H) = e(G, H0,0,1)
for 1 ≤ k ≤ 3d : e(G0,1,k, H) = e(G0,1,0, H0,0,k)
for 0 ≤ i ≤ d, j = 0, 1, 2, k = 1 ≤ k ≤ 3d : e(Gi,j,0, H0,0,k) = e(G, Hi,j,k)
for 0 ≤ i ≤ d, 1 ≤ j ≤ 6, 1 ≤ k ≤ 3d, (i, j) �= (d, 4) :

e(Gi,j,k, H) = e(Gi,j,0, H0,0,k)
for d + 1 ≤ i ≤ 2d, 1 ≤ j ≤ 6, 1 ≤ k ≤ 3d : e(Gi,j,k, H) = e(Gi−d,0,k, Hd,j,0)
e(G0,1,3d, H0,0,3d) = e(G0,1,0, H0,0,6d)
for 0 ≤ i ≤ d, 1 ≤ j ≤ 4 : e(Gi,j,0, H0,0,6d) = e(Gi,j,6d, H)

Fig. 2. The setup process, along with the algorithms to create updates, and verify the
setups and updates.

716 J. Groth et al.

The universal CRS contains base G exponents {xiyjzk}(i,j,k)∈S1 where

S1 =

⎛

⎜
⎜
⎝

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}
∪{(i, j, 0) : i ∈ [0, 2d], j ∈ [1, 12], j �= 7}

∪{(i, j, k) : i ∈ [0, 2d], j ∈ [1, 6], k ∈ [1, 3d], (i, j) �= (d, 4)}
∪{(i, j, 6d) : i ∈ [0, d], j ∈ [1, 4]}

⎞

⎟
⎟
⎠

and base H exponents {xiyjzk}(i,j,k)∈S2 where

S2 =

⎛

⎝
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 6d)}

∪{(i, j, 0) : i ∈ [0, d], j ∈ [1, 6]}
∪{(i, j, k) : i ∈ [0, d], j ∈ [0, 2], k ∈ [1, 3d]}

⎞

⎠ .

We begin with two lemmas about completeness, proofs of which can be found
in the full version of the paper.

Lemma 3 (Correctness of the CRS generation). The scheme is perfectly
correct in the sense that

Pr[(crs, ρ) ← Setup(1λ) : VerifyCRS(1λ, crs, ρ) = 1] = 1;

Pr
[

(crs′, ρn+1) ← Update(1λ, crs, {ρi}n
i=1) :

VerifyCRS(1λ, crs, {ρi}n
i=1) = 1 ∧ VerifyCRS(1λ, crs′, {ρi}n+1

i=1) �= 1

]

= 1
.

We now give two lemmas used to prove the full security of our construction
and the update security of each component. These lemmas prove that even a
dishonest updater needs to know their contribution to the trapdoor. Again,
proofs can be found in the full version of the paper.

Lemma 4 (Trapdoor extraction for subvertible CRSs). Suppose
that there exists a PPT adversary A that outputs a crs, ρ such that
VerifyCRS(1λ, crs, ρ) = 1 with non-negligible probability. Then, by the 0-MK
assumption (equivalent to the B-KEA assumption) there exists a PPT extrac-
tor X that, given the random tape of A as input, outputs (x, y, z) such that
(crs, ρ) = Setup(1λ; (x, y, z)).

This lemma proves that even when given an honestly generated CRS as input,
updaters need to know their contribution to the trapdoor. In this way security
against the updater is linked to an honest CRS.

Lemma 5 (Trapdoor extraction for updatable CRSs). Suppose that there

exists a PPT adversary A such that given (crs, ρ1)
$←− Setup(1λ), A queries

U-Os on (final, crs′, {ρ1, ρ2}) where VerifyCRS(R, crs′, {ρ1, ρ2}) = 1 with non-
negligible probability. Then, with a = {XiY jZk : (i, j, k) ∈ S1} and b =
{XiY jZk : (i, j, k) ∈ S2}, the q-MK and the q-MC assumptions imply that there
exists a PPT extractor X that, given the randomness of A as input, outputs
(α, β, γ) such that Ā2 = Gα, B̄2 = Gβ, and C̄2 = Gγ .

Updatable and Universal Common Reference Strings with Applications 717

5.3 Single Adversarial Updates Imply Updatable Security

The following lemma relates updatable security to a model in which the adver-
sary can make only a single update after an honest setup. This is because it is
much cleaner to prove the security of our construction in this latter model (as
we do in Theorem 4), but we would still like to capture the generality of the
former.

We already know from Lemma 4 that it is possible to extract the adversary’s
contribution to the trapdoor when the adversary generates the CRS itself, and
from Lemma 5 that it is possible to extract it when the adversary updates an
honest CRS. To collapse chains of honest updates into an honest setup it is
convenient that the trapdoor contributions of Setup and Update commute in our
scheme. As the trapdoor in our scheme consists of all the randomness used by
these algorithms, we will from now on refer to chains of honest updates and
(single) honest setups interchangeably.

Trapdoor contributions cannot just be commuted but also combined; that is,
for τ , τ ′ and τ ′′, Update′(1λ,Update′(1λ,Setup′(1λ; τ); τ ′); τ ′′) = Setup′(1λ; τ ⊗
τ ′ ⊗ τ ′′) = Update′(1λ,Update′(1λ,Setup′(1λ; τ ′′); r′); r). Moreover, in our con-
struction the proof ρ depends only on the relation and the randomness of the
update algorithm. In particular it is independent of the reference string being
updated. This enables the following simulation: Given the trapdoor τ̃ = (x, y, z)
of crs, and the elements (G1,0,0, G0,1,0, G0,0,1,H1,0,0,H0,1,0,H0,0,1) of crs′ we
can simulate a proof ρ2 = (A2, B2, C2, Ā2, B̄2, C̄2, Â2, B̂2, Ĉ2) of crs′ being an
update of crs using A2 ← G1,0,0, B2 ← G0,1,0, C2 ← G0,0,1, Ā2 ← Gx−1

1,0,0,

B̄2 ← Gy−1

0,1,0, C̄2 ← Gz−1

0,0,1, Â2 ← Hx−1

1,0,0, B̂2 ← Hy−1

0,1,0, Ĉ2 ← Hz−1

0,0,1. We refer to
this as ρ(crs′)τ−1

in our reduction.
These properties together allow us to prove the result. We here give a detailed

proof for knowledge soundness, as this is the most involved notion. Moreover,
given that knowledge soundness implies soundness and we prove subversion zero-
knowledge directly, it is the only notion we need.

Lemma 6 (Single adversarial updates imply full updatable knowledge
soundness). If our construction is U-KSND secure for adversaries that can
query on (Setup, ∅) only once and then on (final, S) for a set S such that |S| ≤ 2,
then under the assumptions of Lemma 4 and Lemma 5 it is (fully) U-KSND-
secure.

Proof. We need to show that when the advantage is negligible for all PPT adver-
saries B with knowledge extractors XB in the restricted game, then the advan-
tage is negligible for all adversaries A with knowledge extractors XA in the
unrestricted game.

In our representation we split A into two stages A1 and A2, where the first
stage ends with the successful query with intent final (i.e., the query that sets
crs). Let A1,A2 be an adversary against the U-KSND game. Let B be the
following adversary against the restricted U-KSND game.

718 J. Groth et al.

BU-Os (1λ)

(crsh, ρh)
$←− U-Os(Setup, ∅)

st
r←− AOsim

s
1 (1λ)

{ρi, crsi}n
i=1 ← Sfinal

find largest � such that (ρ�, τ�) ∈ Qc

for all i ∈ [� + 1, n]
τi ← XDi

(1λ, r‖t)
S ← {(crsh, ρh),Update(1

λ, crsh, {ρh};∏n
i=� τi)}

crs
$←− U-Os(final, S)

return A2(st)

Osim
s ((intent, S))

if crs �= ⊥ return ⊥
if intent = setup // initialise a CRS sequence

(crs′, ρ′) τ←− Update(1λ, crsh, {ρh})
t ← t‖τ ; Qc ← Qc ∪ {(ρ′, τ)}
return (crs′, ρ′)

if intent = update // update a sequence

τ̃ ← XC(1λ, r‖t)

crs′ τ←− Update(1λ, crsh, {ρh})
ρ′ ← ρ(crsh)

τ/τ̃

t ← t‖τ ; Qc ← Qc ∪ {(ρ′, τ)}
return (crs′, ρ′)

// intent = final finalise sequence

b ← VerifyCRS(1λ, S) ∧
Qc ∩ {(ρi, ∗)}i �= ∅

if b: crs ← crsn

Sfinal ← S; return crsn

return ⊥

Our adversary B can query its own oracle U-Os only once on the empty set,
so it does this upfront to receive an honest reference string crsh. It then picks
randomness r and runs A in a simulated environment in which B itself answers
oracle queries. We keep track of the randomness B uses in the simulation in t.

B embeds the honest reference string in every query with intent �= final. For
this we exploit the fact that CRSs in our scheme are fully re-randomizable. On
setup queries (i.e., when S = ∅), we simply return a randomized crsh.

On general update queries, B additionally needs to compute a valid update
proof ρ. To do this, let C be the algorithm that, given crsh, runs A and the sim-
ulated oracles up to the update query and returns crsn. To extract the trapdoor
for the set S, we use either the subversion trapdoor extractor XC for adversary C
that is guaranteed to exist by Lemma 4 (if S does not contain randomized honest
reference strings), or the update trapdoor extractor that is guaranteed to exist
by Lemma 5 (if it does). This latter extractor provides the update trapdoor, with
respect to crsh, of the reference string crsn provided by the adversary. While A
can make use of values returned in prior queries, the randomness used by these
queries is contained in t and thus also available to XC .

Next, A finalizes n reference strings. Now, the goal of B is to return a sin-
gle update of crsh, so it needs to compress the entire sequence of updates
{ρi}n

i=�+1 into one. To extract the randomness that went into each individ-
ual update, B builds adversaries Di, i ∈ [� + 1, n], from A that return only
(crsi, ρi). By Lemma 5 there exist extractors XDi

that extract only the ran-
domness that went into these individual updates; i.e., δi = (xi, yi, zi) such
that ρi−1, crsi = Update(1λ, crsi−1; δi). Using these extractors, B computes
(crs′

h, ρ′
h) ← Update(1λ, crsh, {ρh};

∏n
i=�+1 δi), sets S ← {crs′

h, {ρh, ρ′
h})}, and

calls Os(final, S) to finalize its own CRS. By construction, crs′
h = crsn. In the

rest of the game B behaves like A.
We build extractor XA from the extractor XB which is guaranteed to exist.

In our definitions, knowledge extractors share state with setup algorithms. Here

Updatable and Universal Common Reference Strings with Applications 719

the main implication of this is that the extractor has access to the challenger’s
randomness, and thus can re-execute the challenger to retrieve its internal state.
XA(r, t‖τ) runs XB(r‖t, τ). Thus the construction of XA simply uses XB but
shifts the randomness of the simulation into the randomness of the challenger.
As the simulation is perfect, A will behave identically. Furthermore, r‖t is a
valid randomness string for B and XB receives input that is consistent with a
restricted game with B. From this point onward B behaves exactly like A2. As B
has negligible success probability against XB in the restricted U-KSNDB,XB(1λ)
game, A thus has negligible success probability against XA in the unrestricted
U-KSNDA,XA(1λ) game. ��

5.4 The zk-SNARK Scheme

In this section we construct a zk-SNARK for QAP satisfiability given the uni-
versal common reference string in Sect. 5.2. First we derive a QAP specific CRS
from the universal CRS with which we can construct efficient prove and verify
algorithms.

Lemma 7. The derive algorithm is computable in polynomial time and the proof
system has perfect completeness if QAP is such that t(x) �= y−1.

A proof of this lemma can be found in the full version of the paper [GKM+18].

Theorem 3. The proof system has perfect subversion zero-knowledge if QAP is
such that t(x) �= y−1.

Proof. To prove subversion zero-knowledge, we need to both show the exis-
tence of an extractor XA, and describe a SimProve algorithm that produces
indistinguishable proofs when provided the extracted trapdoor (which it can
compute given the randomness of both A and the honest algorithms). The
simulator knows x, y, z and picks r ← Fp and sets A = Gr, B = Hr

and C = Gr2+(r+y5+t(x)y6−∑�
i=0 ai(wi(x)y

2+ui(x)y
3+vi(x)y

4))·n(x,y,z). The simulated
proof has the same distribution as a real proof, since y �= 0 and t(x) �= y−1 and
thus the randomisation of A given in r(y − t(x)y2) makes A uniformly random.
Given A the verification equations uniquely determine B,C. So both real and
simulated proofs have uniformly random A and satisfy the equations. Conse-
quently, subversion zero-knowledge follows from the extraction of the trapdoor,
which can be extracted by Lemma 4. ��
Theorem 4. The proof system has update knowledge soundness assuming the
q-MK and the q-MC assumptions hold with a = {XiY jZk : (i, j, k) ∈ S1} and
b = {XiY jZk : (i, j, k) ∈ S2}.

Proof. To prove this it suffices, by the results in Sect. 5.3, to prove security in
the setting in which the adversary makes only one update to the CRS. Imagine
we have a PPT adversary AU-Os that after querying U-Os on (Setup, ∅) to get
crs, then queries on (final, crs′, {ρ, ρ′})), and outputs u, π that gets accepted;

720 J. Groth et al.

Derive(crs,QAP)
parse (, {ui(X), vi(X), wi(X)}m

i=0, t(X)) ← QAP
assert Gy−t(x)y2 �= 1
let si(X, Y) = wi(X)Y 2 + ui(X)Y 3 + vi(X)Y 4 for i = 0, . . . , m
let sm+j(X, Y) = t(X)Y j+1 for j = 1, 2, 3
compute polynomials n1(X, Y), . . . , n3d−m+�(X, Y) such that

for all i = {	 + 1, . . . , m + 3}, k ∈ {1, . . . , 3d − m + 	} the product
si(X, Y) · nk(X, Y) has coefficient 0 for the term XdY 4

for all p(X, Y) · Y 2 /∈ span{si(X, Y)}m+3
i=�+1 there exists k ∈ {1, . . . , 3d − m + 	}

such that the product p(X, Y) · Y 2 · nk(X, Y) has non-zero coefficient for the
term XdY 4

let n(X, Y, Z) = Z6d +
∑3d−m+�

k=1 nk(X, Y)Zk

crsQAP ←

⎛
⎜⎜⎜⎜⎜⎜⎝

QAP, G, {Gxiyj }2d,12
i=0,j=1,j �=7, Gy−t(x)y2

,

{Gwi(x)y
2+ui(x)y

3+vi(x)y
4}m

i=0, G
y5

, Gt(x)y6
, {Gxiy·n(x,y,z)}d

i=0,

G(y−t(x)y2)·n(x,y,z), {G(wi(x)y
2+ui(x)y

3+vi(x)y
4)·n(x,y,z)}m

i=�+1 H,

{Hxiy}d
i=0, Hy−t(x)y2

, {Hwi(x)y
2+ui(x)y

3+vi(x)y
4}m

i=0, H
y5

,

Ht(x)y6
, Hn(x,y,z)

⎞
⎟⎟⎟⎟⎟⎟⎠

Prove(crsQAP, u, w)
assert Hy5 �= Ht(x)y6

set a0 = 1 and parse (a1, . . . , a�) ← u and (a�+1, . . . , am) ← w

let q(X) =
∑m

i=0 aiui(X)·∑m
i=0 aivi(X)−∑m

i=0 aiwi(X)

t(X)

pick r
$←− Fp and compute A ← Ga(x,y), B ← Hb(x,y), C ← Gc(x,y,z), where

a(x, y) = b(x, y)
= q(x)y + r(y − t(x)y2) +

∑m
i=0 ai(wi(x)y2 + ui(x)y3 + vi(x)y4) − y5 − t(x)y6,

c(x, y, z) =
a(x, y) · b(x, y)+
q(x) · y + r · (y − t(x)y2) +

∑m
i=�+1 ai(wi(x)y2 + ui(x)y3 + vi(x)y4)

) · n(x, y, z).
return π = (A, B, C)

Verify(crsQAP, u, π)
set a0 = 1 and parse (a1, . . . , a�) ← u and (A, B, C) ← π
assert e(A, H) = e(G, B)
assert e(A, B) · e(AGy5+t(x)y6−∑�

i=0 ai(wi(x)y
2+ui(x)y

3+vi(x)y
4), Hn(x,y,z))

= e(C, H)

Fig. 3. An updatable and specializable zk-SNARK for QAP

i.e., such that VerifyCRS(R, crs′, {ρ, ρ′}) = 1, crsQAP ← Derive(crs′,QAP),
and Verify(crsQAP, u, π) = 1. Set a0 = 1 and parse the instance as u =
(a1, . . . , a�) and the proof as (A,B,C). By Lemma 5, because the updated CRS
verifies, there exists an extractor XA that outputs τ = (α, β, γ) such that
Update(1λ, crs, {ρ}; τ) = (crs′, ρ′).

From the first verification equation we have e(A,H) = e(G,B), which
means there is an a ∈ Fp such that A = Ga and B = Ha. From the q-MK
assumption there exists a PPT extractor XA for A that outputs field elements

Updatable and Universal Common Reference Strings with Applications 721

{ai,j,k}(i,j,k)∈{(0,0,0)}∪S1 defining a formal polynomial a(X,Y,Z) equal to

a0,0,0 + a1,0,0X +
d,6∑

i=0,j=1

ai,j,0X
iY j +

2d,3,3d∑

i=0,j=0,k=1

ai,j,kXiY jZk + a0,0,6dZ
6d

such that B = Ha(x,y,z).
Taking the adversary and extractor together, we can see them as a combined

algorithm that outputs A,B,C and the formal polynomial a(X,Y,Z) such that
A = Ga(x,y,z). By the q-MC assumption this has negligible probability of hap-
pening unless a(X,Y,Z) is in the span of {0, 0, 0} ∪ S1 ∩ S2

{
1, X, Z, {XiY j}2d,12

i=0,j=1,j �=7, {XiY jZk}2d,6,3d
i=0,j=1,k=1,(i,j) �=(d,4), {XiY jZ6d}d,4

i=0,j=1

}
.

This means

a(X,Y,Z) = a0,0,0 + a1,0,0X +
d,6∑

i=0,j=1

ai,j,0X
iY j +

d,3,3d∑

i=0,j=1,k=1

ai,j,kXiY jZk.

From the second verification equation we get C = Gf(x,y,z) where f(x, y, z)
is given by

a(x, y, z)2 +
(
a(x, y, z) + β5y5 + t(αx)β6y6

−
�∑

i=0

ai(wi(αx)β2y2 + ui(αx)β3y3 + vi(αx)β4y4)
)

· n(αx, βy, γz).

By the q-MC assumption this means

a(X, Y, Z)
2
+

(
a(X, Y, Z) + β

5
Y

5
+ t(αX)β

6
Y

6

−
�∑

i=0

ai(wi(αX)β
2
Y

2
+ ui(αX)β

3
Y

3
+ vi(αX)β

4
Y

4
)
)

· (γ6d
Z

6d
+

3d−m+�∑

k=1

nk(αX, βY)γ
k
Z

k
)

also belongs to the span of
{

1, X, Z, {XiY j}2d,12
i=0,j=1,j �=7, {XiY jZk}2d,6,3d

i=0,j=1,k=1,(i,j) �=(d,4), {XiY jZ6d}d,4
i=0,j=1

}
.

Set a′
i,j,k = ai,j,0

αiβjγk and observe that

a(X,Y,Z) =
∑

i,j,k

ai,j,kXiY jZk =
∑

i,j,k

a′
i,j,k(αX)i(βY)j(γZ)k = a′(αX, βY, γZ).

W.l.o.g. we can then rename the variables αX, βY , γZ by X,Y,Z to get that

a′(X,Y,Z)2 +
(
a′(X,Y,Z) + Y 5 + t(X)Y 6

−
�∑

i=0

ai(wi(X)Y 2 + ui(X)Y 3 + vi(X)Y 4)
)

· (Z6d +
3d−m+�∑

k=1

nk(X,Y)Zk)

722 J. Groth et al.

The span has no monomials of the form XiY jZk for k > 6d. Looking at the
sub-part a′(X,Y,Z)Z6d we deduce that a′

i,j,k = 0 for all k �= 0, which means

a′(X,Y,Z) = a′
0,0,0 + a1,0,0X

′ +
d,6∑

i=0,j=1

a′
i,j,0X

iY j .

There is also no Z6d or XZ6d monimials in the span, so we get a′
0,0,0 = 0 and

a′
1,0,0 = 0. We are now left with

a′(X,Y,Z) =
d,6∑

i=0,j=1

a′
i,j,0X

iY j .

Define q(X), p(X,Y) such that

q(X) · Y + p(X,Y) · Y 2 =
d,6∑

i=0,j=1

a′
i,j,0X

iY j + Y 5 + t(X)Y 6

−
�∑

i=0

ai(wi(X)Y 2 + ui(X)Y 3 + vi(X)Y 4).

Looking at the remaining terms of the form XiY jZk we see that for k =
0, . . . , 3d − m + �

(
q(X) · Y + p(X,Y) · Y 2

) · nk(X,Y) ∈ span{XiY j}2d,6
i=0,j=1,(i,j) �=(d,4).

Since nk(X,Y) has at most degree 2 in Y this implies p(X,Y) ·Y 2 ·nk(X,Y)
has coefficient 0 for the term XdY 4. Recall the nk(X,Y) polynomials had been
constructed such that this is only possible if p(X,Y) · Y 2 can be written as

m∑

i=�+1

ai(wi(X)Y 2 + ui(X)Y 3 + vi(X)Y 4) + r1t(X)Y 2 + r2t(X)Y 3 + r3t(X)Y 4.

Finally, we look at terms of the form XiY 7. These do not exist in the span,
so all the terms of that form in a(X,Y,Z)2 should sum to zero. This implies

(
q(X) · Y +

∑m
i=0 ai(wi(X)Y 2 + ui(X)Y 3 + vi(X)Y 4)

+r1t(X)Y 2 + r2t(X)Y 3 + r3t(X)Y 4 − Y 5 − t(X)Y 6

)2

should have no xiY 7 terms. This in turn implies

2
(

(r3
∑m

i=0 aiui(X) + r2
∑m

i=0 aivi(X) − r1 − q(X)) · t(X)
−∑m

i=0 aiwi(X) +
∑m

i=0 aiui(X) · ∑m
i=0 aivi(X)

)

= 0

By definition of QAP we now have that (a�+1, . . . , am) is a witness for the instance
(a1, . . . , a�). ��

Updatable and Universal Common Reference Strings with Applications 723

6 Updating a Reference String Reveals the Monomials

In this section we show a negative result; namely, that for any updatable pairing-
based NIZK with polynomials encoded into the common reference string, it must
also be allowed (which often it is not) for an adversary to know encodings of the
monomials that make up the polynomials. The reason for this is that from the
encodings of the polynomials, we can construct an adversary that uses the update
algorithm in order to extract the monomials. After describing our monomial
extractor, we give one example (for the sake of brevity) of how to use our mono-
mial extractor to break a QAP-based zk-SNARK, namely Pinocchio [PHGR13].
Due to the similarity in the approaches, however, we believe that the same tech-
niques could be used to show that most other QSP/QAP-based zk-SNARKs in
the literature also cannot be made updatable. As our universal CRS does consist
of monomials, we can avoid this impossibility result yet still achieve linear-size
specialized CRSs for proving specific relations.

Due to space constraints, we present our monomial extractor in the full ver-
sion of the paper, which shows that if a NIZK scheme has an update algorithm,
it can be used to extract all monomials from the common reference string. Intu-
itively, the existence of this monomial extractor would break most pairing-based
NIZK proofs using QAPs or QSPs. This is because these arguments typically
depend on the instance polynomials and the witness polynomials being linearly
independent from each other. Here we give an example by demonstrating how
to break the knowledge soundness of Pinocchio [PHGR13].

Example 1 (We cannot update the common reference string for Pinocchio). Con-
sider the zk-SNARK in Pinocchio [PHGR13]. The scheme runs over a QAP
relation described by

R = {(p,G,GT , e), {vk(X), wk(X), yk(X)}m
k=0, t(X)}

where t(X) is a degree n polynomial, uk(X), vk(X), wk(X) are degree n − 1
polynomials and (p,G,GT , e) is a bilinear group. The instance (c1, . . . , c�) is in
the language if and only if there is a witness of the form (c�+1, . . . , cm) such that,
where c0 is set to 1,

(
m∑

i=0

ckuk(X)

)

·
(

m∑

i=0

ckvk(X)

)

=
m∑

i=0

ckwk(X) + h(X)t(X)

for h(X) some degree n − 1 polynomial.
Here we switch to symmetric pairings, as Pinocchio was originally described

in the symmetric setting (i.e. where G1 = G2.
The common reference string is given by

⎛

⎝
G,GαwGγ , Gβγ , Grurvt(s), {Gsi}n

i=1

{
Gruuk(s), Grvvk(s), Grurvwk(s)

}m

k=0
,

{
Gruαuuk(s), Grvαvvk(s), Grurvαwwk(s), Gβ(ruuk(s)+rvvk(s)+rurvwk(s))

}m

k=�+1

⎞

⎠

724 J. Groth et al.

where ru, rv, s, αu, αv, αw, β, γ are random field elements and G ∈ G. Hence, for
Ec(x) = Gx, there exists a matrix X̂ such that crs = X̂Ec(τ) for

τ =

(
αw, γ, βγ,

{
rurvsi, si

}n

i=0
,

{
rusi, rvsi, ruαusi, rvαvsi, rurvαwsi, ruβsi, rvβsi, rurvβsi

}n−1

i=0

)

. (1)

Lemma 8. For crs = Gτ where τ is as in (1), there exists an adversary that
can find a verifying proof for any instance (c1, . . . , c�) ∈ Fp.

Proof. The verifier in Pinocchio

0/1 ← Verify(crs; c1, . . . , c�;A1, A2, A3, B1, B2, B3,H, Z)

returns 1 if and only the following equations are satisfied

e(Gru
∑�

k=0 ckuk(s)A1, G
rv

∑�
k=0 ckvk(s)A2) = e(Grurvt(s), H)e(Grurv

∑�
k=0 ckwk(s)A3, G)

e(B1, G) = e(A1, G
αu)

e(B2, G) = e(A2, G
αv)

e(B3, G) = e(A1, G
αw)

e(Z,Gγ) = e(A1A2A3, G
βγ).

Suppose the adversary sets the degree n − 1 polynomials ν(X), ω(X), ξ(X) as

ν(X) ← ∑�
k=0 ckvk(X)

ω(X) ← ∑�
k=0 ckwkX

ξ(X) ← ∑�
k=0 ckyk(X)

It then sets the components H, A1, A2, A3 by

H = G, A1 = GrusG−ruν(s), A2 = Grvsn−1
G−rvω(si),

A3 = G−rurv(t(s)−sn)−rurvξ(s)

Direct verification shows that A1, A2, A3 satisfy the first verification equation.
Note that τ does not include the value αwrurvsn, so the final coefficient of
t(s) cannot be included in A3, else the algorithm could not satisfy the fifth
verification equation. Instead we include rus in A1 and rv in A2, so that the
LHS of the first verification equation returns the sole component not cancelled
on the RHS: e(G,G)rurvsn

.
To satisfy verification equations 2–4 the algorithm sets

B1 = GαurusG−αuruν(s), B2 = Gαvrvsn−1
G−αvrvω(s),

B3 = G−αwrurv(t(s)−sn)−αwrurvξ(s)

and to satisfy the fifth and final verification equation the algorithm sets

Z = GβrusGβrvsn−1
G−βruν(s)G−βrvω(s)G−βrurv(t(s)−sn)−βrurvξ(s).

We then have that Verify(crs; c1, . . . , c�;A1, A2, A3, B1, B2, B3,H, Z) = 1. ��

Updatable and Universal Common Reference Strings with Applications 725

Theorem 5. If there exists an update algorithm for Pinocchio, then either the
relation is easy or the scheme is not knowledge-sound.

Proof. Suppose that crs ← Setup(1λ); i.e., crs = X̂Gτ for τ as in Eq. 1. Suppose
that (c1, . . . , c�) ∈ Fp.

The polynomials uk(X), vk(X), wk(X) are Lagrange polynomials, meaning
that each and every one of the components τ are used in the crs. This means
that the RREF of X̂, which we shall call R̂, is such that for 1 ≤ i ≤ length(R̂),
there exists some j such that R̂[i][j] �= 0. Hence by running MonoExtract, an
adversary A can calculate Gτ . By Lemma 8, the adversary A can continue, and
calculate a verifying proof for (c1, . . . , c�). Hence either there is a PPT extractor
that can output a valid witness for any instance (meaning the language is easy),
or there is no extractor and A breaks knowledge-soundness. ��

References

[ABLZ17] Abdolmaleki, B., Baghery, K., Lipmaa, H., Zaj ↪ac, M.: A subversion-
resistant SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10626, pp. 3–33. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70700-6 1

[AF07] Abe, M., Fehr, S.: Perfect NIZK with adaptive soundness. In: TCC (2007)
[AHIV17] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero:

lightweight sublinear arguments without a trusted setup. In: Proceedings
of ACM CCS (2017)

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: Proceedings of the
IEEE Symposium on Security & Privacy (2018)

[BCC+14] Bernstein, D.J., Chou, T., Chuengsatiansup, C., Hülsing, A., Lange, T.,
Niederhagen, R., van Vredendaal, C.: How to manipulate curve stan-
dards: a white paper for the black hat. Cryptology ePrint Archive, Report
2014/571 (2014). http://eprint.iacr.org/2014/571

[BCC+16] Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666,
pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 12

[BCG+14] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E.,
Virza, M.: Zerocash: decentralized anonymous payments from Bitcoin. In:
Proceedings of the IEEE Symposium on Security & Privacy (2014)

[BCG+15] Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sam-
pling of public parameters for succinct zero knowledge proofs. In: Proceed-
ings of the IEEE Symposium on Security & Privacy (2015)

[BCG+17] Bootle, J., Cerulli, A., Ghadafi, E., Groth, J., Hajiabadi, M., Jakobsen,
S.K.: Linear-time zero-knowledge proofs for arithmetic circuit satisfiabil-
ity. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626,
pp. 336–365. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6 12

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
http://eprint.iacr.org/2014/571
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-319-70700-6_12

726 J. Groth et al.

[BCTV14] Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge
via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44381-1 16

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: STOC, pp. 103–112 (1988)

[BFS16] Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS:
security in the face of parameter subversion. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 777–804. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53890-6 26

[BGG17] Bowe, S., Gabizon, A., Green, M.: A multi-party protocol for constructing
the public parameters of the Pinocchio zk-SNARK. Cryptology ePrint
Archive, Report 2017/602 (2017)

[BGM17] Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for
zk-SNARK parameters in the random beacon model. Cryptology ePrint
Archive, Report 2017/1050 (2017). https://eprint.iacr.org/2017/1050

[BP04] Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption
without random oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol.
3329, pp. 48–62. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-30539-2 4

[BR06] Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006).
https://doi.org/10.1007/11761679 25

[BSBHR18] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transpar-
ent, and post-quantum secure computational integrity. Cryptology ePrint
Archive, Report 2018/046 (2018). https://eprint.iacr.org/2018/046

[Buc17] Buck, J.: Ethereum upgrade Byzantium is live, verifies first ZK-Snark
proof. https://cointelegraph.com/news/ethereum-upgrade-byzantium-is-
live-verifies-first-zk-snark-proof. Accessed Sept 2017

[CF01] Canetti, R., Fischlin, M.: Universally composable commitments. Cryptol-
ogy ePrint Archive, Report 2001/055 (2001). http://eprint.iacr.org/2001/
055

[Dam91] Damg̊ard, I.: Towards practical public key systems secure against chosen
ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol.
576, pp. 445–456. Springer, Heidelberg (1992). https://doi.org/10.1007/3-
540-46766-1 36

[Dam92] Damg̊ard, I.: Non-interactive circuit based proofs and non-interactive per-
fect zero-knowledge with preprocessing. In: Rueppel, R.A. (ed.) EURO-
CRYPT 1992. LNCS, vol. 658, pp. 341–355. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-47555-9 28

[Dam00] Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string
model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807,
pp. 418–430. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 30

[DFGK14] Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs
with applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T.
(eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-45611-8 28

https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-53890-6_26
https://eprint.iacr.org/2017/1050
https://doi.org/10.1007/978-3-540-30539-2_4
https://doi.org/10.1007/978-3-540-30539-2_4
https://doi.org/10.1007/11761679_25
https://eprint.iacr.org/2018/046
https://cointelegraph.com/news/ethereum-upgrade-byzantium-is-live-verifies-first-zk-snark-proof
https://cointelegraph.com/news/ethereum-upgrade-byzantium-is-live-verifies-first-zk-snark-proof
http://eprint.iacr.org/2001/055
http://eprint.iacr.org/2001/055
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-46766-1_36
https://doi.org/10.1007/3-540-47555-9_28
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/978-3-662-45611-8_28

Updatable and Universal Common Reference Strings with Applications 727

[FF00] Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes.
In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 413–431.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 26

[FLS99] Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

[Fuc17] Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. Cryptology ePrint
Archive, Report 2017/587 (2017)

[GG17] Ghadafi, E., Groth, J.: Towards a classification of non-interactive com-
putational assumptions in cyclic groups. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 66–96. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70697-9 3

[GGI+15] Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.: Using
fully homomorphic hybrid encryption to minimize non-interative zero-
knowledge proofs. J. Cryptol. 28(4), 820–843 (2015)

[GGPR13] Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span pro-
grams and succinct NIZKs without PCPs. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 37

[GHM+17] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand:
scaling Byzantine agreements for cryptocurrencies. In: SOSP (2017)

[GKM+18] Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable
and universal common reference strings with applications to zk-SNARKS.
Cryptology ePrint Archive, Report 2018/280 (2018). https://eprint.iacr.
org/2018/280

[GM17] Groth, J., Maller, M.: Snarky signatures: minimal signatures of knowledge
from simulation-extractable SNARKs. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 581–612. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 20

[GO14] Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. J. Cryp-
tol. 27(3), 506–543 (2014)

[GOP94] Goldreich, O., Ostrovsky, R., Petrank, E.: Computational complexity and
knowledge complexity. In: Electronic Colloquium on Computational Com-
plexity (ECCC), vol. 1, no. 7 (1994)

[GOS12] Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive
zero-knowledge. J. ACM 59(3), 11:1–11:35 (2012)

[Gro10a] Groth, J.: Short non-interactive zero-knowledge proofs. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 341–358. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 20

[Gro10b] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 19

[Gro16] Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 11

[GS12] Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear
groups. SIAM J. Comput. 41(5), 1193–1232 (2012)

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: STOC, pp. 99–108 (2011)

https://doi.org/10.1007/3-540-44598-6_26
https://doi.org/10.1007/978-3-319-70697-9_3
https://doi.org/10.1007/978-3-642-38348-9_37
https://eprint.iacr.org/2018/280
https://eprint.iacr.org/2018/280
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-642-17373-8_20
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11

728 J. Groth et al.

[KP98] Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof
system for NP with general assumptions. J. Cryptol. 11(1), 1–27 (1998)

[Lip12] Lipmaa, H.: Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In: TCC, pp. 169–189 (2012)

[Lip13] Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span
programs and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 41–60. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-42033-7 3

[LMS16] Lipmaa, H., Mohassel, P., Sadeghian, S.S.: Valiant’s universal cir-
cuit: improvements, implementation, and applications. IACR Cryptology
ePrint Archive 2016:17 (2016)

[PHGR13] Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly prac-
tical verifiable computation. In: Proceedings of the IEEE Symposium on
Security & Privacy (2013)

[SCP00] De Santis, A., Di Crescenzo, G., Persiano, G.: Necessary and sufficient
assumptions for non-iterative zero-knowledge proofs of knowledge for all
NP relations. In: 27th International Colloquium on Automata, Languages
and Programming (ICALP), pp. 451–462 (2000)

[SP92] De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without
interaction (extended abstract). In: 33rd Annual Symposium on Founda-
tions of Computer Science, pp. 427–436 (1992)

[Val76] Valiant, L.G.: Universal circuits (preliminary report). In: Proceedings of
the 8th Annual ACM Symposium on Theory of Computing, pp. 196–203
(1976)

[WTas+17] Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-
efficient zk-SNARKs without trusted setup. Cryptology ePrint Archive,
Report 2017/1132 (2017). https://eprint.iacr.org/2017/1132

https://doi.org/10.1007/978-3-642-42033-7_3
https://eprint.iacr.org/2017/1132

	Updatable and Universal Common Reference Strings with Applications to zk-SNARKs
	1 Introduction
	2 Related Work
	3 Defining Updatable and Universal CRS Schemes
	3.1 Notation
	3.2 NIZK Proofs in the CRS Model
	3.3 Updating Common Reference Strings
	3.4 Security Properties
	3.5 Specializing Common Reference Strings

	4 Background
	4.1 Knowledge and Computational Assumptions
	4.2 A QAP-Based zk-SNARK Recipe

	5 An Updatable QAP-Based zk-SNARK
	5.1 Reworking the QAP Recipe
	5.2 Updatability of the Universal Common Reference String
	5.3 Single Adversarial Updates Imply Updatable Security
	5.4 The zk-SNARK Scheme

	6 Updating a Reference String Reveals the Monomials
	References

