Skip to main content

Brain Disease Diagnosis Using Deep Learning Features from Longitudinal MR Images

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10987))

Abstract

Deep learning-based brain disease diagnoses utilizing magnetic resonance (MR) images has attracted increasing attention in the field of computer-aided diagnosis. However, most existing methods require computationally expensive preprocessing before feature extraction, such as 3D MR image registration and landmark detection. Additionally, these methods only employ cross-sectional MR images. Recent studies have demonstrated that longitudinal images acquired at different time points can comprehensively reflect the pathological changes of diseases. To date, effectively capturing information from variable numbers of longitudinal MR images has not been adequately investigated. In this study, we propose a deep learning method taking advantage of longitudinal MR images for disease diagnoses. In particular, we first extract features from slice images employing a Deep Convolutional Neural Network (DCNN) in an end-to-end manner. This avoids 3D image registration and landmark detection. We then generate longitudinal-level features by using the Bag-of-Words (BoW) model. Lastly, we devise a Recurrent Neural Network (RNN) to capture the pathological changes for facilitating disease diagnoses. We evaluate the proposed method on the public Alzheimer’s Disease National Initiative (ADNI) dataset. Extensive experiments show that the proposed method is superior to baseline methods and is robust to both the Alzheimer’s disease (AD) and mild cognitive impairment (MCI) diagnoses. Moreover, the proposed method can effectively learn pathological changes from the longitudinal MR images for disease diagnosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://adni.loni.usc.edu/.

  2. 2.

    https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET.

  3. 3.

    http://pytorch.org/docs/0.3.0/modules/torchvision/models/resnet.htmlresnet18.

References

  1. Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., Feng, D.: Early diagnosis of Alzheimer’s disease with deep learning. In: ISBI, pp. 1015–1018. IEEE (2014)

    Google Scholar 

  2. Shi, J., Zheng, X., Li, Y., Zhang, Q., Ying, S.: Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE J. Biomed. Health Inf. 22(1), 173–183 (2018)

    Article  Google Scholar 

  3. Suk, H.-I., Lee, S.-W., Shen, D., et al.: Deep ensemble learning of sparse regression models for brain disease diagnosis. Med. Image Anal. 37, 101–113 (2017)

    Article  Google Scholar 

  4. Korolev, S., Safiullin, A., Belyaev, M., Dodonova, Y.: Residual and plain convolutional neural networks for 3D brain MRI classification. arXiv preprint arXiv:1701.06643 (2017)

  5. Suk, H.-I., Shen, D.: Deep learning-based feature representation for AD/MCI classification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 583–590. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_72

    Chapter  Google Scholar 

  6. Suk, H.-I., Lee, S.-W., Shen, D., et al.: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage 101, 569–582 (2014)

    Article  Google Scholar 

  7. Chincarini, A., Sensi, F., Rei, L., Gemme, G., Squarcia, S., Longo, R., Brun, F., Tangaro, S., Bellotti, R., Amoroso, N., et al.: Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer’s disease. Neuroimage 125, 834–847 (2016)

    Article  Google Scholar 

  8. Farzan, A., Mashohor, S., Ramli, A.R., Mahmud, R.: Boosting diagnosis accuracy of Alzheimer’s disease using high dimensional recognition of longitudinal brain atrophy patterns. Behav. Brain Res. 290, 124–130 (2015)

    Article  Google Scholar 

  9. Zhang, J., Liu, M., An, L., Gao, Y., Shen, D.: Alzheimer’s disease diagnosis using landmark-based features from longitudinal structural mr images. IEEE J. Biomed. Health Inf. 21, 1067–1616 (2017)

    Google Scholar 

  10. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on CVPR, pp. 770–778 (2016)

    Google Scholar 

  12. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: Null, p. 1470. IEEE (2003)

    Google Scholar 

  13. Yang, J., Price, B., Cohen, S., Lee, H., Yang, M.-H.: Object contour detection with a fully convolutional encoder-decoder network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 193–202 (2016)

    Google Scholar 

  14. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  15. Noh, H., Hongsuck Seo, P., Han, B.: Image question answering using convolutional neural network with dynamic parameter prediction. In: Proceedings of the IEEE Conference on CVPR, pp. 30–38 (2016)

    Google Scholar 

  16. Cai, J., Lu, L., Xie, Y., Xing, F., Yang, L.: Pancreas segmentation in MRI using graph-based decision fusion on convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 674–682. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_77

    Chapter  Google Scholar 

  17. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  18. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. Roy. Stat. Soc. Ser. C Appl. Stat. 28(1), 100–108 (1979)

    MATH  Google Scholar 

  19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  20. Hinton, G., Srivastava, N., Swersky, K.: RmsProp: divide the gradient by a running average of its recent magnitude. Neural Networks For Machine Learning, Coursera Lecture (2012)

    Google Scholar 

  21. Matthews, B.W.: Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim. et Biophys. Acta (BBA) Protein Struct. 405(2), 442–451 (1975)

    Article  Google Scholar 

  22. Doran, G., Ray, S.: A theoretical and empirical analysis of support vector machine methods for multiple-instance classification. Mach. Learn. 97(1–2), 79–102 (2014)

    Article  MathSciNet  Google Scholar 

  23. Joachims, T.: Making large-scale SVM learning practical. SFB 475: Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität Dortmund, Technical Report (1998)

    Google Scholar 

  24. Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

Download references

Acknowledgement

The paper is partly supported by the National Natural Science Foundation of China under Grant No. 61672181, 51679058, Natural Science Foundation of Heilongjiang Province under Grant No. F2016005, the Numerical Tank Innovative Project (Phase I) and the Council Scholarship of China. Data collection and sharing was funded by ADNI (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions. We are also thankful for Mason Mcgough (his introduction is here https://www.bme.ufl.edu/labs/yang/group.html) for his serious presentation modification.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Haiwei Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, L. et al. (2018). Brain Disease Diagnosis Using Deep Learning Features from Longitudinal MR Images. In: Cai, Y., Ishikawa, Y., Xu, J. (eds) Web and Big Data. APWeb-WAIM 2018. Lecture Notes in Computer Science(), vol 10987. Springer, Cham. https://doi.org/10.1007/978-3-319-96890-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96890-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96889-6

  • Online ISBN: 978-3-319-96890-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics