
ar
X

iv
:1

80
5.

06
75

7v
1

 [
cs

.D
B

]
 1

7
M

ay
 2

01
8

Matching Consecutive Subpatterns Over

Streaming Time Series

Rong Kang1,2, Chen Wang1,2, Peng Wang3, Yuting Ding1,2, and Jianmin
Wang1,2

1 School of Software, Tsinghua University, Beijing, China
2 National Engineering Laboratory for Big Data Software, China

{kr11, dingyt16}@mails.tsinghua.edu.cn
{wang chen, jimwang}@tsinghua.edu.cn

3 School of Computer Science, Fudan University, Shanghai, China
pengwang5@fudan.edu.cn

Abstract. Pattern matching of streaming time series with lower latency
under limited computing resource comes to a critical problem, especially
as the growth of Industry 4.0 and Industry Internet of Things. How-
ever, against traditional single pattern matching model, a pattern may
contain multiple subpatterns representing different physical meanings in
the real world. Hence, we formulate a new problem, called “consecutive
subpatterns matching”, which allows users to specify a pattern contain-
ing several consecutive subpatterns with various specified thresholds. We
propose a novel representation Equal-Length Block (ELB) together with
two efficient implementations, which work very well under all Lp-Norms
without false dismissals. Extensive experiments are performed on syn-
thetic and real-world datasets to illustrate that our approach outper-
forms the brute-force method and MSM, a multi-step filter mechanism
over the multi-scaled representation by orders of magnitude.

Keywords: pattern matching, stream, time series

1 Introduction

Time series are widely available in diverse application areas, such as Healthcare
[21], financial data analysis [22] and sensor network monitoring [25], and they
turn the interests on spanning from developing time series database [6]. In recent
years, the rampant growth of Industry 4.0 and Industry Internet of Things,
especially the development of intelligent control and fault prevention to complex
equipment on the edge, urges more challenging demands to process and analyze
streaming time series from industrial sensors with low latency under limited
computing resource [24].

As a typical workload, similarity matching over streaming time series has
been widely studied for fault detection, pattern identification and trend predic-
tion, where accuracy and efficiency are the two most important measurements
to matching algorithms [11]. Given a single or a set of patterns and a pre-defined

http://arxiv.org/abs/1805.06757v1

2 R. Kang et al.

threshold, traditional similarity matching algorithms aim to find matched subse-
quences over incoming streaming time series, between which the distance is less
than the threshold. However, in certain scenarios, the single threshold pattern
model is not expressive enough to satisfy the similarity measurement require-
ments. Let us consider the following example.

Subpattern 1 Subpattern 2 Subpattern 3

Fig. 1: Diverse patterns of Extreme
Operating Gust(EOG). EOG pattern
is composed of three subpatterns and
users tend to specify a larger thresh-
old for Subpattern 2 comparing with
Subpattern 1 and Subpattern 3.

1 4 5 11 12 15

P1 P2 P3

P1

^

Wt,1

^
P2

^

Wt,2

^
P3

^

Wt,3

^
P4

^

Wt,4

^
P5

^

Wt,5

^

(b) Pattern!

"""" Window Block

(a) Pattern

 Subpatterns

Fig. 2: (a) Pattern P is composed of
three subpatterns: P1 = P [1 : 4], P2 =
P [5 : 11] and P3 = P [12 : 15].
(b) In ELB representation, if we set
block size w = 3, P andWt are divided
into 5 pattern/window blocks.

In the field of wind power generation, Extreme Operating Gust (EOG) [4] is
a typical gust pattern which is a phenomenon of dramatic changes of wind speed
in a short period. Early detection of EOG can prevent the damage to the turbine
[17]. A typical pattern of EOG has three physical phases, where its corresponding
shape contains a slight decrease (Subpattern 1), followed by a steep rise, a steep
drop (Subpattern 2), and a rise back to the original value (Subpattern 3). Users
usually emphasize the shape feature of the second subpattern much more than
its exact numeric value. In other words, users tend to specify a larger threshold
of distance measurement for Subpattern 2 comparing with Subpattern 1 and
Subpattern 3. For instance, all time series in Fig. 1 are regarded as correct
matches of EOG, although they have diverse values in their second subpatterns.

In summary, above example shows that a complex pattern is usually com-
posed of several subpatterns representing different physical meanings, and users
may want to specify various thresholds for different parts. There are similar situ-
ations in other fields like electrocardiogram in Healthcare and technique analysis
in the stock market. Therefore, we formulate a new problem, named as consecu-
tive subpatterns matching over streaming time series. In this scenario, a pattern
contains a list of consecutive subpatterns with different thresholds. A sliding
window on stream matches the given pattern only if each of its components
matches the corresponding subpattern.

Although many techniques have been proposed for time series similarity
matching, they do not aim to solve the problem mentioned above. For stream-

Matching Consecutive Subpatterns Over Streaming Time Series 3

ing time series matching, some recent works take advantage of similarity or
correlation of multiple patterns and avoid the whole matching of every single
patterns [11,21]. Similarly, most of the previous approaches for subsequence sim-
ilarity search explore and index the commonalities of time series in database to
accelerate the query [14,20]. These approaches are not optimized for the scenario
of matching consecutive subpatterns.

In this paper, we propose Equal-Length Block (ELB) representation together
with the lower bounding property. ELB representation divides both the pattern
and a sliding window into equal-length disjoint pattern/window blocks. Then
ELB characterizes a pattern block as upper/lower bounds and a window block
as a single value. Two ELB implementations are provided which allow us to
process multiple successive windows together, so that speed up the matching
process dramatically while guaranteeing no false dismissals.

In summary, this paper makes the following contributions:

– We introduce a new model, consecutive subpatterns matching, which allows
us to describe pattern more expressively and process streaming time series
more precisely.

– We propose a novel ELB representation which accelerate the matching pro-
cess dramatically under all Lp-norms and guarantees no false dismissals.

– We illustrate the efficiency of our algorithms with sufficient experiments on
real-world and synthetic datasets and a comprehensive theoretical analysis.

The rest of the paper is arranged as follows: Sect. 2 gives a brief review
of the related work. Sect. 3 formally defines our problem. Sect. 4 proposes ELB
representation together with its two implementations. Sect. 5 conducts extensive
experiments. Finally, Sect. 6 concludes the paper.

2 Related Work

There are two categories of the related works, multiple patterns matching over
streaming time series and subsequence similarity search.

Multiple patterns matching over streaming time series. Traditional sin-
gle pattern matching over the stream is relatively trivial, hence recent research
works put more focus on optimizing the multiple pattern scenario. Atomic wedge
[21] is proposed to monitor stream with a set of pre-defined patterns, which ex-
ploits the commonality among patterns. Sun et al. [18] extend atomic wedge for
various length queries and tolerances. Lian et al. [11] propose a multi-scale seg-
ment mean (MSM) representation to detect static patterns over streaming time
series. They discuss the batch processing optimization and the case of dynamic
patterns in its following work [10]. Lim et al. [12] propose SSM-IS which divides
long sequences into smaller windows. Although these techniques are proposed
for streaming time series and some of them speed up the distance calculation
between the pattern and the candidate, most of them focus on exploring the
commonality and correlation among multiple patterns for pruning unmatched

4 R. Kang et al.

pattern candidates, which doesn’t reduce the complexity brought by the problem
of consecutive subpatterns matching.
Subsequence similarity search. FRM [5] is the first work for subsequence
similarity search which maps data sequences in database into multidimensional
rectangles in feature space. General Match [16] divides data sequences into gener-
alized sliding windows and the query sequence into generalized disjoint windows,
which focuses on estimating parameters to minimize the page access. Loh et
al. [14] propose a subsequence matching algorithm that supports normalization
transform. Lim et al. [13] address this problem by selecting the most appropri-
ate index from multiple indexes built on different windows sizes. Kotsifakos et
al. [9] propose a framework which allows gaps and variable tolerances in query
and candidates. Wang et al. [20] propose DSTree which is a data adaptive and
dynamic segmentation index on time series. This category of researches focuses
on indexing the common features of archived time series, which is not optimized
for pattern matching over the stream.

3 Problem Definition

Pattern P is a time series which contains n number of elements (p1, · · · , pn).
We denote the subsequence (pi, · · · , pj) of P by P [i : j]. Logically, P could be
divided into several consecutive subpatterns which may have varied thresholds
of matching deviation. Given a pattern P , P is divided into b number of non-
overlapping subsequences in time order, represented as P1, P2, · · · , Pb, in which
the k-th subsequence Pk is defined as the k-th subpattern and associated with
a specified threshold εk.

As shown in Fig. 2(a), for instance, pattern P is composed of three subpat-
terns: P1 = P [1 : 4], P2 = P [5 : 11] and P3 = P [12 : 15]. These subpatterns may
be spesified different thresholds.

A streaming time series S is an ordered sequence of elements that arrive in
time order. We denote a sliding window on S which starts with timestamp t by
Wt = (st,1, st,2, · · · , st,n). We denote the the subsequence (st,i, st,i+1, · · · st,j) in
Wt by Wt[i : j]. According to the sub-pattern division of P , Wt is also divided
into b sub-windows Wt,1,Wt,2, · · · ,Wt,b. For convenience, we refer to pi and st,i
as an element pair.

There are many distance functions such as DTW [3], LCSS [19] , Lp-norm
[23], etc. We choose Lp-norm distance which covers a wide range of applications
[1][5][15]. Given two n-length sequences where X = (x1, x2, · · · , xn) and Y =
(y1, y2, · · · , yn), the Lp-Norm Distance between X and Y is defined as follows:

Lp(X,Y) = (

n
∑

i=1

|xi − yi|
p)

1

p

Since the Lnorm is a distance function between two equal-length sequences,
there are |Wt| = n and |Wt,k| = |Pk| for k ∈ [1, b]. In addition, we denote by
Lp[i : j] the normalized Euclidean distance between P [i : j] and Wt[i : j].

Matching Consecutive Subpatterns Over Streaming Time Series 5

Problem Statement: Given a pattern P which contains b number of sub-
patterns P1, P2, · · · , Pb with specified thresholds ε1, ε2, · · · , εb. For a stream S,
consecutive subpatterns matching is to find all sliding windows Wt on S, where
it holds that Lp(Pk,Wt,k) 6 εk for k ∈ [1, b] (denoted by Wt,k ≺ Pk).

4 Equal-Length Block

In this section, we first sketch a novel representation, Equal-Length Block(ELB),
together with Lower Bounding Property, which enables us to process several
successive windows together while guaranteeing no false dismissals. After that,
we will introduce two ELB implementations in turn.

ELB representation is inspired by the following observation. To avoid false
dismissals, a naive method is to slide the window over the stream by one element
and calculates the corresponding distance, which is computationally expensive.
However, one interesting observation is that in most real-world applications, the
majority of adjacent subsequences of time series might be similar. This heuristic
gives us the opportunity to process multiple successive windows together. Based
on this hint, we propose Equal-Length Block (ELB), and the corresponding lower
bounding property.

ELB divides the pattern P and the sliding window Wt into several disjoint
w-length blocks while the last indivisible part can be safely discarded. The block
division is independent of pattern subpatterns. A block may overlap with two
or more adjacent subpatterns, and a subpattern may contain more than one
block. The number of blocks is denoted by N = ⌊n/w⌋. Based on the concept of
block, P and Wt are split into P̂ = {P̂1, · · · , P̂N} and Ŵt = {Ŵt,1, · · · , Ŵt,N}

respectively, where P̂j (or Ŵt,j) is the j-th block of P (or Wt), that is, P̂j =

{p(j−1)·w+1, p(j−1)·w+2, · · · , pj·w}, similarly for Ŵt,j . As shown in Fig. 2(b), we
set w = 3, thus P andWt are divided into 5 blocks. Based on blocks, each pattern
block P̂j is represented by a pair of bounds, upper and lower bounds, which are

denoted by P̂u
j and P̂ l

j respectively. Each window block Ŵt,j is represented by a

feature value, denoted by Ŵ f
t,j .

It is worth noting that the ELB representation is only an abstract format
description, which doesn’t specify how to compute upper and lower bounds of
P̂j and the feature of window Ŵt,j . We can design any ELB implementation,
which just needs to satisfy the following lower bounding property:

Definition 1. (Lower Bounding Property): given P̂ and Ŵt, if ∃ i ∈ [0, w),
Wt+i is a result of consecutive subpatterns matching of P , then ∀j ∈ [1, N],

P̂ l
j 6 Ŵ f

t,j 6 P̂u
j (marked as Ŵt,j ≺ P̂j).

We first provide our matching algorithm based on ELB which satisfies lower
bounding property before introducing our ELB implementation. Instead of pro-
cessing sliding windows one-by-one, lower bounding property enables us to pro-
cess w successive windows together in the pruning phase. Given N number of
window blocks {Ŵt,1, · · · , Ŵt,N}, if anyone in them (e.g. Ŵt,j) doesn’t match

6 R. Kang et al.

its aligned pattern block (P̂j correspondingly), we could skip w consecutive win-
dows, Wt,Wt+1, · · · ,Wt+w−1, together. Otherwise, the algorithm takes these
w windows as candidates and calculate exact distances one by one. The lower
bounding property enables us to extend the sliding step to w while guaranteeing
no false dismissals. The critical challenge is how to design ELB implementation
which is both computationally efficient and effective to prune sliding windows.

4.1 Element-based ELB Representation

In this section, we present the first ELB implementation, element-based ELB,
denoted by ELBele. The basic idea is as follows. According to our problem
statement, if window Wt matches P , for any subpattern Pk and corresponding
Wt,k, their Lp-Norm distance holds that:

Lp(Wt,k, Pk) 6 εk (1)

It’s easy to infer that any element pair pi together with st,i, which falls into the
k-th subpattern, satisfies that:

|st,i − pi| 6 εk (2)

In other words, if st,i falls out of the range [pi − εk, pi + εk], we know that Wt

cannot match P .
Based on this observation, we construct two envelope lines for pattern P , as

illustrated in Fig. 3(b). The upper line U = {U1, U2, · · · , Un} and the lower line
L = {L1, L2, · · · , Ln} are defined as follows, 1 6 i 6 n:

{

Ui = pi + εk

Li = pi − εk
(3)

The envelope guarantees that if st,i falls out of [Li, Ui], we know that Wt cannot
match P .

Now we consider how to construct ELB implementation satisfying the lower
bounding property, i.e., how to construct upper/lower bounds of pattern block
and the feature of window block so that we could prune w number of successive
windows together. We show the basic idea with an example in Fig. 3(a). Assume
w = 3 and N = 5. At the sliding window Wt, element st,9 aligns with p9.
Accordingly, in Wt+1 (or Wt+2), st,9 aligns with p8 (or p7). Obviously, if st,9
falls out of all upper and lower envelopes of p9, p8 and p7, these 3 corresponding
windows can be pruned together. Note that st,9 is the last element of block Ŵt,3,
and only in this case, all three elements of P aligning with st,9 belong to a same

pattern block P̂3. Based on this observation, we define P̂u
j , P̂

l
j and Ŵ f

j as follows:

P̂u
j = max

06i<w
(Uj·w−i)

P̂ l
j = min

06i<w
(Lj·w−i)

Ŵ f
t,j = last(Ŵt,j) = st,j·w

(4)

Matching Consecutive Subpatterns Over Streaming Time Series 7

(b)(a)

P aligned with Wt+1

L

U

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P aligned with Wt

P aligned with Wt+2

p
9

p
8

p
7

s
t, 9 P1

^u

P1

^ l

P1

^

P2

^

P3

^

P4

^

P5

^

Stream

Fig. 3: (a) The element st,9 aligns with p9, p8 and p7 at Wt,Wt+1 and Wt+2

respectively. (b) P̂u
j and P̂ l

j are constructed by U and L.

As shown in Fig. 3(b), for each pattern block, its upper and lower bounds are set
to the maximum and minimum of its two envelope lines respectively. It’s obvious
that ELBele satisfies the lower bounding property.

4.2 Subsequence-based ELB Representation

In this section, we introduce the second ELB implementation, subsequence-based
ELB, denoted by ELBseq. Compared to ELBele, ELBseq has a tighter bound
which brings higher pruning power, although it is a little costlier on computing
features of window blocks.

Different from ELBele which uses the tolerance of the whole subpattern to
constrain one element pair, in ELBseq, we use the same tolerance to constrain a
w-length subsequence. Referring to [10], given two sequences X = (x1, · · · , xw)
and Y = (y1, · · · , yw) , it holds that:

w |µx − µy|
p
6

w
∑

i=1

|xi − yi|
p (5)

where µx and µy are the mean values of X and Y . This theorem allows us to
construct upper/lower envelope with the mean value of the subsequence.

Consider two w-length subsequences P [i′ : i] and Wt[i
′ : i] where i′ = i−w+1

(i′ > 0 so i > w). We first consider the case that all elements in P [i′ : i]
(or Wt[i

′ : i]) belongs to only one subpattern(like Pk) and the corresponding
subwindow(like Wt,k). If Wt,k matches Pk, referring to Eq. 1, we know that:

Lp(P [i′ : i],Wt[i
′ : i])p =

i
∑

j=i′

(pj − st,j)
p
6 εpk (6)

8 R. Kang et al.

We denote by µP [i′:i] and µWt[i′:i] that the mean value of P [i′ : i] and Wt[i
′ : i]

respectively. By combining Eq. 5 and Eq. 6, we have:

|µP [i′:i] − µWt[i′:i]| 6 (
1

w
εpk)

1/p (7)

We construct the envelope of pattern P as follows, w 6 i 6 n:

Ui = µP [i′:i] + (
1

w
εpk)

1/p

Li = µP [i′:i] − (
1

w
εpk)

1/p
(8)

Now we consider the case that the interval [i′ : i] overlaps with more than
one subpattern. Suppose P [i′ : i] overlaps with Pkl

, Pkl+1, · · · , Pkr
. Due to the

additivity of the p-th power of Lp-Norm, we deduce from Eq. 6 that:

Lp(P [i′ : i],Wt[i
′ : i])p =

i
∑

j=i′

(pj − st,j)
p
6

kr
∑

k=kl

εpk (9)

By combining Eq. 5 and Eq. 9, we have that:

|µP [i′:i] − µWt[i′:i]| 6 (
1

w

kr
∑

k=kl

εpk)
1/p (10)

We denoted the right term as θseq(i) and provide the general case of the pattern
envelope as follows, w 6 i 6 n:

{

Ui = µP [i′:i] + θseq(i)

Li = µP [i′:i] − θseq(i)
(11)

Note that Eq. 8 is the special case of Eq. 11.
The construction of upper and lower bounds are very similar to ELBele, while

the feature of window block is adopted to the mean value. We show the basic
idea with an example in Fig. 4(a). At the sliding window Wt, the subsequence
Wt[7 : 9] aligns with P [7 : 9]. Similarly, in Wt+1 (or Wt+2), this subsequence
aligns with P [6 : 8] (or P [5 : 7]). According to Eq. 11, we know that if the mean
value of Wt[7 : 9] falls out of all upper and lower bounds of P [7 : 9], P [6 : 8] and
P [5 : 7], these 3 corresponding windows can be pruned together. Based on this
observation, we give the formal implementation of ELBseq as follows:

P̂u
j = max

06i<w
(Uj·w−i)

P̂ l
j = min

06i<w
(Lj·w−i)

Ŵ f
t,j = mean(Ŵt,j) = µWt[(j−1)·w+1 : j·w]

(12)

Note that, the upper and lower bounds of P̂1 are meaningless according to the
definition of the envelope of ELBseq.

Figure 4(b) provides an example of ELBseq implementation. For clarity, we

only illustrate the bounds of P̂3. The lower bound P̂ l
3 is set to the minimum of

L7, L8 and L9 and covers 3 successive windows Wt,Wt+1 and Wt+2.

Matching Consecutive Subpatterns Over Streaming Time Series 9

(b)(a)

P aligned with Wt+1

L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P aligned with Wt

P aligned with Wt+2

P3

^u

P1

^

P2

^

P3

^

P4

^

P5

^

µ
P:����

µ
Wt�����

µ
P	
��

µ
P�����

U

L7⇒ P[5:7]

L8⇒ P[6:8]

L9⇒ P[7:9]

Stream

P3

^ l

Fig. 4: (a) The subsequence Wt[7 : 9] aligns with P [7 : 9], P [6 : 8] and P [5 : 7] at
Wt,Wt+1 and Wt+2 respectively. (b) P̂u

j and P̂ l
j are constructed by U and L.

4.3 Complexity Analysis

We first analyze ELBele. For each block Ŵt,j , the time complexities of comput-

ing feature and determining Ŵt,j ≺ P̂j are both O(1). Therefore, the amortized
pruning cost of ELBele is O(1/w). Its space complexity is O(N) = O(⌊n/w⌋).
Although ELBele is very efficient, it constrains one element pair with the tol-
erance of the whole subpattern, which makes the envelope loose. Its pruning
effectiveness is better when thresholds are relatively small, or pattern deviates
from the normal stream far enough.

ELBseq calculates the mean value of each window block with O(w) and

determining Ŵt,j ≺ P̂j with O(1). Considering a window block appears in several
consecutive sliding windows, we store feature values in memory to avoid repeated
calculation. Therefore, the amortized pruning cost of ELBseq is reduced to O(1).
Same as ELBele, the space complexity of ELBseq is O(N).

5 Experimental Evaluation

In this section, we first describe datasets and experimental settings in Sect. 5.1
and then present the results of performance evaluation comparing the brute-force
approach Sequential Scanning(SS), the classic method MSM [10] and our two
approaches based on ELBele(ELB-ELE) and ELBseq (ELB-SEQ) respectively.
As presented in Sect. 2, although there are many works after MSM addressing
time series similarity matching, most of them focus on utilizing the commonality
among multiple patterns to build indexes, but not speeding up the problem of
matching stream with a list of consecutive subpatterns.

Our goal is to:

– Demonstrate the efficiency of our approach on all Lp-Norm distance and
different thresholds.

10 R. Kang et al.

– Demonstrate the robustness of our approach on different pattern occurrence
probabilities.

– Investigate the impact of block size on performance which helps to choose
the appropriate parameter.

5.1 Experimental Setup

The experiments are conducted on both synthetic and real-world datasets.
Datasets. Real-world datasets are collected from a wind turbine manufacturer,
where each wind turbine has hundreds of sensors generating streaming time
series with sampling rate from 20 ms to 7s. Our experimental datasets are from 3
turbines. In each turbine, we collect data of 5 sensors including wind speed, wind
deviation, wind direction, generator speed and converter power. We replay the
data as streams with total lengths of 108. For each stream, a pattern containing
consecutive subpatterns with thresholds is given by domain experts.

Synthetic datasets are constructed based on UCR Archive [7]. UCR Archive
is a popular time series repository, which includes a set of datasets widely used in
time series mining researches [2,8,10]. To simulate patterns with various lengths,
we select four datasets, Strawberry (Straw for short), Meat, NonInvasiveFa-
talECG Thorax1 (ECG for short) and MALLAT whose time series lengths are
235, 448, 750 and 1024. Referring to [10], for each selected UCR dataset, we
choose the first time series of class 1 as the pattern and divide it into several
subpatterns according to its shape and trend. Numbers of subpatterns of these
four datasets are 5, 6, 8 and 7 respectively.

Concerning threshold of synthetic datasets, we define threshold ratio as the
ratio of the average threshold to the value range of this subpattern. Given a
threshold ratio and a subpattern Pk, the Lp-Norm threshold of Pk is defined by:

εk = |Pk|
1/p × threshold ratio× value range(Pk)

In practice, we observe that threshold ratio being larger than 30% indicates that
the average deviation from a stream element to its aligned pattern element is
more than 30% of its value range. In this case, the candidate may be quite
different from given pattern where similarity matching becomes meaningless.
Therefore, we vary threshold ratio from 5% to 30% in Sect. 5.2.

As for streaming data of synthetic datasets, referring to [2], we first generate
a random walk time series S with length of 108 for each UCR dataset. Element
si of S is si = R +

∑i
j=1(µj − 0.5), where µj is a uniform random number in

[0, 1]. As value ranges of the four patterns are about -3 to 3, we set R as the
mean value 0. Then we randomly embed some time series of class 1 of each UCR
dataset into corresponding steaming data with certain occurrence probabilities.
Algorithm. We compare our approaches to SS and MSM [10]. SS matches
the sliding window one by one. For each window, SS calculates the Lp-Norm
distances between all subpatterns and subwindows sequentially. In our scene, we
let MSM build hierarchical grid index for each subpattern. For fair comparison,
we adopt its batch version where the batch size is equal to ELB block size. We

Matching Consecutive Subpatterns Over Streaming Time Series 11

perform three schemes of MSM to choose the best one: stop the pruning phase
at the first level of grid index(MSM-1), the second level (MSM-2), or never early
stop the pruning phase(MSM-MAX).
Default Parameter Settings. There are three parameters for datasets: dis-
tance function, threshold and pattern occurrence probability. There is a parame-
ter for our algorithm: block size. The default distance function is set to L2-Norm
(i.e., Euclidean distance). The default value of threshold ratio and pattern occur-
rence probability are set to 20% and 10−4 respectively. We set the default value
of block size to 5% of the pattern length. The impact of all above parameters
will be investigated in following sections.
Performance Measurement. We regard the brute-force method SS as the
baseline and measure the speedup of MSM and our algorithms. Streams and
patterns are loaded into memory in advance where data loading time is excluded.
To avoid the inaccuracy due to cold start and random noise, we run all algorithms
over 10,000 ms and average them by their cycle numbers. All experiments are
run on 4.00 GHz Intel(R) Core(TM) i7-4790K CPU, with 8GB physical memory.

5.2 Performance Analysis

In this set of experiments, we first show our algorithms together outperform
compared approaches on both synthetic and real-world datasets under differ-
ent Lp-Norm functions and provide detailed analysis. After that, we perform
experiments on diverse synthetic datasets by varying threshold ratio and pat-
tern occurrence probability to demonstrate efficiency and robustness of our ap-
proaches. At last, we also evaluate the impact of block size for optimal parameter
determination.

Performance under Different Lp-Norm Distance In this section, we re-
port experiments of ELB-ELE and ELB-SEQ comparing to SS and MSM under
different distance functions. We performed these experiments on all real-world
and synthetic datasets using Lp-Norm where p = 1, 2, 3,∞.

Figure 5 shows the experimental results. For real-world datasets, the results
are similar among different turbines, so we only illustrate the wind turbine 1. Our
algorithms show a great advantage over MSM and SS. As the distance function
varies from L1-Norm to L∞-Norm, the advantage of our approaches over other
methods gets larger.

We provide the experimental detail on a wind generator dataset in Table 1.
The first two columns present the total and pruning time on each sliding window.
Column pruning power is the percentage of pruned windows. Comparing to
SS, our algorithms could prune numerous windows in the pruning phase, while
SS has to perform exact matching for each sliding window, resulting in high
time cost. Regarding MSM, its pruning power gets better from MSM-ONE to
MSM-MAX (increased from 98.20% to 99.96% in L1-Norm). Although MSM is
more accurate, our pruning phase is much more efficient than MSM. Concerning
ELB SEQ and MSM TWO (the best one among three MSM schemes) on L1-
Norm, our approach has slightly lower pruning power (97.16% vs. 99.89%), yet

12 R. Kang et al.

s1 s2 s3 s4 s5
real-world datasets

10-1

100

101

102

103

A
v
e
ra
g
e
 S
p
e
e
d
-u
p

SS

MSM-TWO

ELB-ELE

ELB-SEQ

(a) wind L1-Norm

s1 s2 s3 s4 s5
real-world datasets

10-1

100

101

102

103

A
v
e
ra
g
e
 S
p
e
e
d
-u
p

SS

MSM-TWO

ELB-ELE

ELB-SEQ

(b) wind L2-Norm

s1 s2 s3 s4 s5
real-world datasets

10-1

100

101

102

103

A
v
e
ra
g
e
 S
p
e
e
d
-u
p

SS

MSM-TWO

ELB-ELE

ELB-SEQ

(c) wind L3-Norm

s1 s2 s3 s4 s5
real-world datasets

10-1

100

101

102

103

A
v
e
ra
g
e
 S
p
e
e
d
-u
p

SS

MSM-TWO

ELB-ELE

ELB-SEQ

(d) wind L∞-Norm

Straw Meat ECG MALLAT
real-world datasets

10-1

100

101

102

103

A
v
e
ra
g
e
 S
p
e
e
d
-u
p

SS

MSM-TWO

ELB-ELE

ELB-SEQ

(e) UCR L1-Norm

Straw Meat ECG MALLAT
real-world datasets

10-1

100

101

102

103

A
v
e
ra
g
e
 S
p
e
e
d
-u
p

SS

MSM-TWO

ELB-ELE

ELB-SEQ

(f) UCR L2-Norm

Straw Meat ECG MALLAT
real-world datasets

10-1

100

101

102

103

A
v
e
ra
g
e
 S
p
e
e
d
-u
p

SS

MSM-TWO

ELB-ELE

ELB-SEQ

(g) UCR L3-Norm

Straw Meat ECG MALLAT
real-world datasets

10-1

100

101

102

103

A
v
e
ra
g
e
 S
p
e
e
d
-u
p

SS

MSM-TWO

ELB-ELE

ELB-SEQ

(h) UCR L∞-Norm

Fig. 5: Speedup vs. Lp-Norm. s1: wind speed, s2: wind deviation, s3: wind direc-
tion, s4: generator speed, s5: converter power.

Table 1: The Detail statistics on wind generator dataset

Algorithm
L1-Norm L∞-Norm

total
time(ns)

pruning
time(ns)

pruning
power(%)

total
time(ns)

pruning
time(ns)

pruning
power(%)

ELB SEQ 13.04 0.52 97.16 8.78 0.41 97.43

ELB ELE 146.10 0.51 6.48 10.78 0.30 96.18

MSM ONE 556.39 543.15 98.20 691.11 667.34 87.05

MSM TWO 548.42 547.40 99.89 670.51 668.73 99.21

MSM MAX 549.43 548.94 99.96 682.40 682.00 99.97

SS 562.84 - - 413.34 - -

much more efficient pruning cost(0.52 vs. 547.40). On the whole, ELE SEQ has
an advantage of more than one order of magnitude over MSM TWO.

Now we analyze the different performance of ELB on different Lp-Norm. From
L1-Norm to L∞-Norm, the pruning effectiveness of ELB gets better. Although
ELB-ELE spends less time on pruning phase than ELB-SEQ, its pruning power
is very low at L1-Norm (6.48%) due to its too loose bound. As p increases, its
bound becomes tighter and performance gets better. In the case of L∞-Norm,
its performance has been flat with, and even outperformed ELB-SEQ on several
datasets, as shown in Fig. 5(d) and (h). In contrast to ELB-ELE, ELB-SEQ is
efficient under all Lp-Norms.

Impact of Distance Threshold In this section, we compare the performance
of ELB-ELE, ELB-SEQ, SS and MSM under different thresholds.We vary thresh-
old ratio from 5% to 30% on synthetic datasets, as described in Sect. 5.1.

Matching Consecutive Subpatterns Over Streaming Time Series 13

0 5 10 15 20 25 30
threshold_ratio(%)

10-1

100

101

102

103

104

105

A
v
e
ra
g
e
 S
p
e
e
d
-u
p

ELB-SEQ

ELB-ELE

MSM-TWO

SS

(a) UCR Straw

0 5 10 15 20 25 30
threshold_ratio(%)

10-1

100

101

102

103

104

105

A
v
e
ra
g
e
 S
p
e
e
d
-u
p

ELB-SEQ

ELB-ELE

MSM-TWO

SS

(b) UCR Meat

0 5 10 15 20 25 30
threshold_ratio(%)

10-1

100

101

102

103

104

105

A
v
e
ra
g
e
 S
p
e
e
d
-u
p

ELB-SEQ

ELB-ELE

MSM-TWO

SS

(c) UCR ECG

0 5 10 15 20 25 30
threshold_ratio(%)

10-1

100

101

102

103

104

105

A
v
e
ra
g
e
 S
p
e
e
d
-u
p

ELB-SEQ

ELB-ELE

MSM-TWO

SS

(d) UCR MALLAT

Fig. 6: Speedup vs. threshold ratio

10−3 5×10−4 10−4 5×10−5 10−5

occurrence probability

10-1

100
101

102
103
104
105

106

A
v
e
ra
g
e
 S
p
e
e
d
-u
p

ELB-SEQ

ELB-ELE

MSM-TWO

SS

(a) UCR Straw

10−3 5×10−4 10−4 5×10−5 10−5

occurrence probability

10-1

100
101

102
103
104
105

106

A
v
e
ra
g
e
 S
p
e
e
d
-u
p

ELB-SEQ

ELB-ELE

MSM-TWO

SS

(b) UCR Meat

10−3 5×10−4 10−4 5×10−5 10−5

occurrence probability

10-1

100
101

102
103
104
105

106

A
v
e
ra
g
e
 S
p
e
e
d
-u
p

ELB-SEQ

ELB-ELE

MSM-TWO

SS

(c) UCR ECG

10−3 5×10−4 10−4 5×10−5 10−5

occurrence probability

10-1

100
101

102
103
104
105

106

A
v
e
ra
g
e
 S
p
e
e
d
-u
p

ELB-SEQ

ELB-ELE

MSM-TWO

SS

(d) UCR MALLAT

Fig. 7: Speedup vs. pattern occurrence probability.

The result on synthetic datasets is shown in Fig. 6. The performances of
our two algorithms are very similar in synthetic datasets. Both ELB-ELE and
ELB-SEQ outperforms MSM and SS by orders of magnitude. As the threshold
gets larger, the speedups of ELB-ELE and ELB-SEQ decrease slightly. Never-
theless, our algorithms keep their advantage over other approaches even though
threshold ratio increases to 30%.

Impact of Pattern Occurrence Probability In this section, we further ex-
amine the performance by varying the pattern occurrence probability. When the
probability becomes lower, more windows are filtered out in the pruning phase.
In contrast, when the probability becomes higher, more windows enter the post-
processing phase. A good approach should be robust to these situations.

We perform this experiment on synthetic datasets and vary the occurrence
probability over {10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5}. The largest probability
is set to 10−3 since in this case, the stream of MALLAT, which has largest
pattern length, has been filled up by embedded UCR time series. As illustrated
in Fig. 7, Our algorithms outperform MSM and SS in all examined probabilities.
Furthermore, our algorithms show a larger speedup when the pattern occurrence
probability becomes lower. This experiment demonstrates the robustness of our
algorithms over different occurrence probabilities.

Impact of Block Size The block size is an important parameter affecting the
pruning power of our approach. In this experiment, we investigate the effect of
block size by comparing ELB-ELE, ELB-SEQ and MSM on both synthetic and

14 R. Kang et al.

0 5 10 15 20 25 30 35 40
block ratio(%)

10-1

100

101

102

103

104

A
v
e
ra

g
e
 S

p
e
e
d
-u

p

ELB-SEQ

ELB-ELE

MSM-TWO

(a) UCR Straw

0 5 10 15 20 25 30 35 40
block ratio(%)

10-1

100

101

102

103

104

A
v
e
ra

g
e
 S

p
e
e
d
-u

p

ELB-SEQ

ELB-ELE

MSM-TWO

(b) UCR Meat

0 5 10 15 20 25 30 35 40
block ratio(%)

10-1

100

101

102

103

A
v
e
ra

g
e
 S

p
e
e
d
-u

p

ELB-SEQ

ELB-ELE

MSM-TWO

(c) wind direction

0 5 10 15 20 25 30 35 40
block ratio(%)

10-1

100

101

102

103

104

A
v
e
ra

g
e
 S

p
e
e
d
-u

p

ELB-SEQ

ELB-ELE

MSM-TWO

(d) generator speed

Fig. 8: Speedup vs. block ratio.

real-world datasets. We vary the ratio of the block size to the pattern length
from 1% to 40%. A ratio being larger than 50% indicates that the entire pattern
contains only one block, which makes ELE-SEQ meaningless.

Figure 8 shows the experimental results on some representative synthetic
and real-world datasets while the rest are consistent. A too small or too large
block size results in performance degradation. In detail, a smaller block size
leads to a tighter bound for each block which improves the pruning effectiveness.
Nevertheless, a small block size, corresponding to a small sliding step, results in
more block computation and higher cost in the pruning phase. A larger block
size may bring less block computation, but a looser bound meanwhile. The loose
bound incurs degradation of the pruning effectiveness. In practice, our algorithms
achieve the optimal performance when the block ratio is about 5% to 10%.

6 Conclusion

In this paper, we propose a new problem, called “consecutive subpatterns match-
ing”, which allows users to specify a pattern containing a list of consecutive
subpatterns with different distance thresholds. We present a novel ELB repre-
sentation to prune sliding windows efficiently under all Lp-Norms. We conduct
extensive experiments on both synthetic and real-world datasets to illustrate
that our algorithm outperforms the baseline solution and prior-arts.

References

1. R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence
databases. In Foundations of Data Organization and Algorithms, pages 69–84.
Springer, Berlin, Heidelberg, Oct. 1993. DOI: 10.1007/3-540-57301-1 5.

2. N. Begum and E. Keogh. Rare time series motif discovery from unbounded streams.
PVLDB, 8(2):149–160, 2014.

3. D. J. Berndt and J. Clifford. Using Dynamic Time Warping to Find Patterns in
Time Series. In KDD workshop, volume 10, pages 359–370, 1994.

4. E. Branlard. Wind energy: On the statistics of gusts and their propagation through
a wind farm. ECN-Wind-Memo-09, 5, 2009.

5. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast Subsequence Matching
in Time-series Databases. In SIGMOD, pages 419–429. ACM, 1994.

Matching Consecutive Subpatterns Over Streaming Time Series 15

6. S. K. Jensen, T. B. Pedersen, and C. Thomsen. Time Series Management Systems:
A Survey. TKDE, PP(99):1–1, 2017.

7. E. Keogh. Welcome to the UCR Time Series Classification/Clustering Page:
www.cs.ucr.edu/˜eamonn/time series data.

8. E. Keogh. Exact Indexing of Dynamic Time Warping. In PVLDB, pages 406–417,
Hong Kong, China, 2002.

9. A. Kotsifakos, P. Papapetrou, J. Hollmn, and D. Gunopulos. A subsequence
matching with gaps-range-tolerances framework: a query-by-humming application.
PVLDB, 4(11):761–771, 2011.

10. X. Lian, L. Chen, J. X. Yu, J. Han, and J. Ma. Multiscale representations for fast
pattern matching in stream time series. TKDE, 21(4):568–581, 2009.

11. X. Lian, L. Chen, J. X. Yu, G. Wang, and G. Yu. Similarity Match Over High
Speed Time-Series Streams. In ICDE, pages 1086–1095. IEEE, Apr. 2007.

12. H.-S. Lim, K.-Y. Whang, and Y.-S. Moon. Similar sequence matching support-
ing variable-length and variable-tolerance continuous queries on time-series data
stream. Information Sciences, 178(6):1461–1478, 2008.

13. S.-H. Lim, H.-J. Park, and S.-W. Kim. Using Multiple Indexes for Efficient Sub-
sequence Matching in Time-Series Databases. In DASFAA, pages 65–79. Springer
Berlin Heidelberg, Apr. 2006.

14. W.-K. Loh, S.-W. Kim, and K.-Y. Whang. A subsequence matching algorithm
that supports normalization transform in time-series databases. DMKD, 9(1):5–
28, 2004.

15. G. Luo, K. Yi, S. W. Cheng, Z. Li, W. Fan, C. He, and Y. Mu. Piecewise linear
approximation of streaming time series data with max-error guarantees. In 2015

IEEE 31st International Conference on Data Engineering, pages 173–184, Apr.
2015.

16. Y.-S. Moon, K.-Y. Whang, andW.-S. Han. General match: a subsequence matching
method in time-series databases based on generalized windows. In SIGMOD, pages
382–393. ACM, 2002.

17. A. Pace, K. Johnson, and A. Wright. Lidar-based extreme event control to prevent
wind turbine overspeed. In 51st AIAA Aerospace Sciences Meeting including the

New Horizons Forum and Aerospace Exposition, page 315, 2012.
18. H. Sun, K. Deng, F. Meng, and J. Liu. Matching Stream Patterns of Various

Lengths and Tolerances. In CIKM, pages 1477–1480. ACM, 2009.
19. M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidimensional

trajectories. In ICDE, pages 673–684. IEEE, 2002.
20. Y. Wang, P. Wang, J. Pei, W. Wang, and S. Huang. A Data-adaptive and Dynamic

Segmentation Index for Whole Matching on Time Series. PVLDB, 6(10):793–804,
Aug. 2013.

21. L. Wei, E. Keogh, H. Van Herle, and A. Mafra-Neto. Atomic wedgie: efficient query
filtering for streaming time series. In ICDM, pages 8–pp. IEEE, 2005.

22. H. Wu, B. Salzberg, and D. Zhang. Online event-driven subsequence matching
over financial data streams. In SIGMOD, pages 23–34. ACM, 2004.

23. B.-K. Yi and C. Faloutsos. Fast Time Sequence Indexing for Arbitrary Lp Norms.
In PVLDB, pages 385–394. Morgan Kaufmann Publishers Inc., 2000.

24. J. Zhao, K. Liu, W. Wang, and Y. Liu. Adaptive fuzzy clustering based anomaly
data detection in energy system of steel industry. Information Sciences, 259(Sup-
plement C):335–345, Feb. 2014.

25. Y. Zhu and D. Shasha. Efficient elastic burst detection in data streams. In
SIGKDD, pages 336–345. ACM, 2003.

	Matching Consecutive Subpatterns Over Streaming Time Series

