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Abstract

Concurrent linearizable access to shared objects can be prohibitively
expensive in a high contention workload. Many applications apply ad-hoc
techniques to eliminate the need of synchronous atomic updates, which
may result in non-linearizable implementations. We propose a new pro-
gramming model which leverages such patterns for concurrent access to
objects in a shared memory system. In this model, each thread maintains
different views on the shared object - a thread-local view and a global
view. As the thread-local view is not shared, it can be updated without
incurring synchronization costs. These local updates become visible to
other threads only after the thread-local view is merged with the global
view. This enables better performance at the expense of linearizability.
We show that it is possible to maintain thread-local views and to perform
merge efficiently for several data types and evaluate their performance
and scalability compared to linearizable implementations. Further, we
discuss the consistency semantics of the data types and the associated
programming model.

1 Introduction

Concurrent programming on shared-memory architectures is notoriously diffi-
cult. A concurrent system consists of a set of processes communicating implic-
itly through shared data structures. The visibility of updates on these data
structures depends on the intricate interplay of synchronization mechanisms as
defined by the memory model. Linearizability [10] has turned out to be a fun-
damental notion on simplifying the reasoning about correctness of shared data
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structures for programmers. This consistency model formalizes the notion of
atomicity for high-level operations. In an execution, every method call is asso-
ciated with a linearization point, a point in time between its invocation and its
response. The call appears to occur instantaneously at its linearization point,
behaving as specified by the sequential definition.

While linearizability is very useful for reasoning about the correctness of
concurrent data structures, its implementation can be prohibitively expensive.
As the number of cores increases in a multi-core system, the synchronization
cost becomes more apparent that, it favors the relaxation of the concurrent ob-
jects semantics for scaling the programs [17]. In practice, programming patterns
are emerging that attempt to limit the associated cost of the required synchro-
nization on the memory accesses. For example, in the widely-used messaging
library ZeroMQ, adding messages to the queue is at the core of the application.
While lock-free linearizable queues are fast, the developers observed that en-
queuing new messages was affecting the overall performance, especially in high
contention workloads [18]. However, only the relative order of messages from
a single thread are relevant for the semantics of the message queue; it is not
necessary to maintain a strict order of enqueue operations when two indepen-
dent threads try to insert messages concurrently into the queue. To overcome
the performance penalty, the developers re-engineered their message queue such
that multiple messages are added as a batch, thus using only one single atomic
operation.

For another example, consider a shared counter that is concurrently updated
by several threads. The final value of the counter must include all increments
performed, but the order of increments is not relevant since all increments are
commutative. If each increment executed by each thread is an atomic opera-
tion made visible to all other threads, it can become a bottleneck limiting the
performance of the program [5]. In many cases, it is sufficient to execute the
increment on some thread-local variable and to apply a combined update to the
shared object.

In this paper, we propose a new programming model for shared objects that
leverages the different views of an object, the global-local view model. In this
model, each thread has a local view of the object which is isolated from other
threads. Threads update and read the local view. The local updates, though
visible in a local view, are made visible on a global view only after an explicit
two-way merge operation is performed. The other threads observe these changes
once they synchronize, by merge, their local view with the global view. As the
local view is non-shared, the local updates can be executed without requiring
synchronization, thus enabling better performance, albeit at the expense of
linearizability.

In addition to the local operations, the model also provides synchronous op-
erations on the global view. Consider, for example, a queue where the enqueues
have been executed on the local view. To guarantee that the elements are de-
queued only once, dequeues are executed atomically on the global view. We
call the operations that perform only on local view, weak operations and those
on global view, strong operations. Combining operations on the global and the
local views, we can build data types with customizable semantics on the spec-
trum between sequential and purely mergeable data types. Mergeable data types
provide only weak and merge operations; hybrid mergeable data types offer both
weak and strong operations. An application that uses a hybrid mergeable data
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type may use weak updates when a non-linearizable access is sufficient and can
switch to use only strong operations when stronger guarantees are required.

In distributed systems, mergeable data types [16, 7] are already widely in
use. In this setting, each replica can be concurrently updated without requiring
any synchronization and can later be merged with other replicas, while it is
guaranteed that all nodes reach a convergent state once all updates have been
delivered. To our knowledge, the applicability of such data types in a multi-core
shared-memory setting has not been explored systematically, yet. In previous
work, we have demonstrated how such types can be employed in Software Trans-
actional Memory to prevent aborts by resolving conflicts automatically [3]. In
another work, Doppel [15], an in-memory multi-core database, uses a per-core
replica of objects and type-specific merge operations to parallelize conflicting
transactions.

Contributions This paper makes the following contributions:

1. We propose a new programming model, global-local view, for scalable
multi-threaded applications that implements an adaptable trade-off be-
tween update visibility and synchronization cost (Section 3).

2. We provide a unified operational model of mergeable and hybrid data
types and give a formal definition of their consistency semantics (Section
5).

3. We discuss the implementation of a mergeable counter, a hybrid counter,
and a hybrid queue (Section 4) and compare their scalability with their lin-
earizable counterparts in both low and high contention workloads (Section
6).

In our preliminary work [4], we propose a mergeable counter and bag im-
plementation. In contrast, this paper explores the concept of mergeability in
depth by providing a formal model, specifications of further data types and an
experimental evaluation.

2 Related Work

Programming models: Maintaining per-thread replicas and performing updates
on them has been considered by different programming models in the literature.
In Concurrent Revisions [6], a forked thread’s state is initially, a copy of its
parent thread’s state. The forked thread makes changes on its copy which is
merged to the parent thread when it is joined back. During the join, conflicting
updates are resolved using type-specific merge operations. The focus of this
work is on fork-join model, where threads can communicate their state only
when they join their parent. In contrast, we provide a generic model for the
data types where a two-way merge and strong updates can share states among
the threads at any point in the execution, thus enabling the applications to tune
their use.

Global Sequence Protocol (GSP) [8] is a model for replicated and distributed
data systems. Similar to our model, GSP has a global state which is represented
as a sequence of operations. Each client stores a prefix of this global sequence.
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The updates by client are first appended to the local sequence of pending opera-
tions and then broadcast to other replicas using a reliable total order broadcast
protocol which enforces a single order on the global sequence. Since GSP ad-
dresses a distributed system’s system model, with no bounds on message delays,
there is much less control on replica divergence and liveness of the global se-
quence evolution. In contrast, here we address a shared-memory concurrent
architecture that allows to reason about bounds on divergence and stronger
progress guarantees on the evolution of shared state.

Read-copy-update (RCU) [9] is a synchronization mechanism to allow pro-
cesses to read a shared object while a concurrent modification is in progress.
Similar to our model, multiple versions of the object are maintained so that read-
ers observe consistent state while a modification is in progress. However, RCU
is suited only for a single writer-multiple readers scenario. Read-log-update
(RLU) [13] is an improvement over RCU that allows concurrent writers. Unlike
our model, concurrent writes are serializable which is achieved by serializing the
writes or by fine-grained locking.

Relaxed consistency models: Many models attempt to relax the strict seman-
tics of linearizability[10] to achieve better performance. Quasi linearizability [1]
allows each operation to be linearized at a different point at some bounded dis-
tance from its strict linearization point. For example, a queue that dequeues
in a random order, but never returns empty if the queue is not empty, is a
quasi linearizable queue. Quasi linearizability, thus allows more parallelism by
allowing flexible implementations. Our work is complimentary to this model,
allowing a flexible combination of strong and weak updates to achieve different
consistency semantics. Weak and medium future linearizability [11] is applica-
ble to the data types implemented using futures which allow flexible reordering
of the operations. Others models, such as k-linearizability [2] and quiescent
consistency [19], also define the correctness based on some sequential history,
possible reordered, of the operations.

Mergeable Data Types: The idea of concurrent updates to the replicas of an
object and merging them to a convergent state was formalized by Conflict free
Replicated Data Types (CRDTs) [16], which are now widely used in distributed
replicated data systems. The properties of CRDTs, such as commutative oper-
ations and a semi-lattice structure, guarantee that concurrent updates can be
safely executed on different replicas and later merged to get a consistent state
on all replicas. The high network latency and possible reordering of messages in
distributed system resulted in properties of CRDTs much different from what is
required in a shared memory system. In this paper, we show implementations of
mergeable data types that are tailored for shared memory concurrent programs.

Even though no consolidated theory on mergeable data types exists in the
shared memory ecosystem, there have been systems that use such types with
restricted properties. Doppel [15] is a multi-core database that uses a mechanism
called phase reconciliation to parallelize conflicting transactions. When a high
contention workload is detected, Doppel switches to a split phase where the
transaction updates per-core copy of the objects. At the end of the split phase,
per-core copies are merged. Only operations that are commutative are executed
in the split phase, thus guaranteeing serializability.
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3 Programming Model

The system we consider is built upon a classical shared-memory architecture
as supported by specifications such as the C++ or Java memory models. We
assume that the system consists of a variable number of threads. Any thread
can spawn new threads that may outlive their parent thread. The system dis-
tinguishes two types of memory: local memory is associated to a single thread
and can only be accessed by this thread; shared memory can be accessed by
any thread. Communication and coordination between the threads are done via
shared-memory objects; we assume that there are no side channels. In particu-
lar, spawned threads do not inherit local objects from their parents.

Each shared object o has a global copy that is accessible by all threads that
have a reference to it. In addition, each thread has its own local copy of o. A
thread may update and read its own local copy, but it is not accessible by any
other thread. The local updates are incorporated into the global copy when
a merge operation is executed. Conflicting (non-commutative) updates from
concurrent threads are resolved by a type-specific merge operation. In addition
to the local updates and reads, the model also provides updates and read directly
on the global copy. This gives flexibility for the data type semantics and the
implementation of the underlying data structure.

An operation opKind on an object in the global-local view model can be
formalized as a function

opKindt(m, g, st, lt) = (r, g′, s′t, l
′
t)

where m comprises the (optional) type-specific update(u) or query(q) method
applied on the object, g denotes the shared global object on which the operation
is applied, and t is a thread identifier that refers to the non-shared local version
(st, lt) of the object. Here, st denotes a local snapshot of the shared object state
g which gets updated upon synchronization, and lt refers to the local updates
not yet incorporated in the shared global state g. The operation returns a tuple
(r, g′, s′t, l

′
t) where r is the return value of the method m and the other variables

refer to the updated global g′ and local state s′t, l
′
t. State variables – g, st, lt –

are each modeled as a sequence of updates, initially empty; a sequence x can be
concatenated with another sequence y (or a single update), denoted by x · y.

Following are the basic operations in the global-local view model; these are
type-independent:

• pull updates the local object snapshot with the global object state; local
operations are not changed.

pullt(g, st, lt) = (⊥, g, g, lt)

• weakRead returns the result of a type-specific read-only operation q on the
state obtained by applying local updates on the local snapshot.

weakReadt(q , g, st, lt) = (q(st · lt), g, st, lt)

• strongRead returns the result of a type-specific read-only operation q on
the state obtained by applying local updates on global state. Neither the
global state nor the local snapshot are changed.

strongReadt(q , g, st, lt) = (q(g · lt), g, st, lt)
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• weakUpdate applies the update method u on the local copy without any
synchronization to the global state.

weakUpdatet(u, g, st, lt) = (st · lt · u, g, st, lt · u)

• strongUpdate applies the update method u on the global state atomically.
The previous weak updates that are batched in lt are not merged at this
point.

strongUpdatet(u, g, st, lt) = (g · u, g · u, st, lt)

• merge incorporates the local updates to the global states and updates the
local snapshot.

merget(g, st, lt) = (⊥, g′, g′,⊥)

where g′ = merge(g, (st, lt)) and merge is type specific merge opera-
tion. In general, if the updates are commutative, g′ = g·lt. The data
types can also specify a conflict resolving merge operation, in case of
non-commutative concurrent updates.

While weakRead and weakUpdate act exclusively on the local copy, strongRead
and strongUpdate act on the global state. The combination of these two oper-
ations supports flexible optimizations on each individual data type. For exam-
ple, a queue can guarantee that an element is dequeued only once by execut-
ing dequeues in strongUpdate. At the same time, enqueues can be applied as
weakUpdate and merged later for better performance. For an integer counter,
we may want to enforce a weak limit on the maximum value, i.e. its value should
not diverge arbitrarily from the defined maximum value. Such a counter can
use a strongRead to check the global value to adapt the merge frequency or to
switch to a fully synchronized version.

4 Data Types

Each mergeable type defines a subset of the basic operations from the global-
local view model, depending on the semantics needed. A purely mergeable
counter defines only weak operations and merge, while a hybrid mergeable
counter also defines strong operations. In this section, we discuss the speci-
fication of several data types and their implementation.

4.1 Specification

Given a sequential counter with methods inc (increments the counter by 1),
value (returns the current value), a purely mergeable counter implements fol-
lowing operations.

• weakValuet() = weakReadt(value, , st, lt)

• weakInct() = weakUpdatet(inc, , , lt)

• merge(g, (st, lt)) = g·lt
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The merge appends the local increments to the global sequence g, because the
increments are commutative. A hybrid mergeable counter defines the following
operations in addition to the above ones. The applications may choose weak or
strong operations dynamically based on different criteria.

• strongInct() = strongUpdatet(inc, g, , )

• strongValuet() = strongReadt(value, g, , lt)

A sequential queue has operations enqueue(e) and dequeue. A hybrid merge-
able queue with mergeable enqueue and synchronized dequeue defines the fol-
lowing operations:

• enqueuet(e) = weakUpdatet(enqueue(e), , , lt)

• dequeuet() = strongUpdatet(dequeue, g, , )

• merge(g, (st, lt)) = g·lt

In the above semantics, if the global copy is empty, dequeue returns null
even if there are local enqueue operations by the same thread which have not
been merged yet. We can allow dequeue to include local enqueue operations by
defining

dequeuet() = strongUpdatet(dequeue, g
′, , ) with ( , g′ , ) = merget(g, st, lt).

In this way we can combine the operations to give different semantics. For
example, a queue with weak enqueue and weak dequeue may be useful if redun-
dant dequeue is not a problem for the application. A queue with both strong
enqueue and strong dequeue behaves as a linearizable queue.

A grow-only bag is a set that allows only add operation, and allows duplicate
elements. A purely mergeable bag implements weakAdd and merge.

4.2 Implementation

The implementation of (hybrid) mergeable data types consists of two parts –
an object variable for local view and another for global view. Local view and
global view may or may not be of same type. A generic pattern for imple-
menting a mergeable data type MDT is given by the following (object-oriented
programming inspired) pseudocode:

type MDT {

ThreadLocal T1 localView;

T2 globalView;

// weakUpdate or weakRead

op1(param){

localView.op1(param );

}

// strongupdate

op2(param){

atomic { globalView.op2(param); }

}

7



merge (){

atomic {

globalView.merge(localView );

localView.reset(globalView );

}

}

The types of localview and globalview (T1,T2) may or may not be of same type.
Local views are thread-local instances as identified by ThreadLocal. A variable
specified as ThreadLocal exists per thread in the thread’s private storage. Many
programming languages support some form of thread-local storage (TLS). A
mergeable data type can also implement its own thread local storage by mapping
thread ids to different instances of the object.

atomic refers to any synchronization mechanism such as mutex or lock-free
techniques such as compare and swap or transactional memory that atomically
executes the code block with in. op1, op2 refers to the methods implementing
object’s update or query operations. reset updates the local view to the global
view.

weak operations are executed on the local view. The ThreadLocal descriptor
guarantees that each thread is accessing its own private view. For some data
types, local views are isolated from each other and the global view, by main-
taining a full copy of the object in each view. For large data structures, such as
list or trees, maintaining a full copy is not efficient. Thus the local views may
contain references to parts of the data structures that are shared by other local
views or global view. In most cases, the shared parts are not directly updated
by the weak updates, but only read. For example, a lookUp on a list may first
traverse the locally added items and then the shared parts of the list which
are conceptually part of its local view. The mechanisms to make sure that an
update on the global view does not change the local views, if it is updating
the shared part, depends on the data type semantics and the underlying data
structure being used. We show designs of a few data types where this can be
done efficiently and correctly without copying the entire data structure.

Counter The global view of a mergeable counter is an integer g. The local
view consists of a pair of integers (s, l). The weak increments are collected in the
variable l and added to g during the merge. This design is inspired on sloppy
counters [5], while using a local counter per thread instead of per core. The
following pseudocode shows the implementation of a counter.

type Counter: {int g, ThreadLocal int s, ThreadLocal int l}

weakInc () {

l++;

}

strongInc (){

atomic {g++}

}

int weakValue (){

return s+l;

}

int strongValue (){

return g+l;

8



head

T1

T2

(a) Two threads with different local views.

T1

T2

head

(b) After T1’s local view is merged.

Figure 1: Mergeable grow-only bag.

}

merge (){

atomic {g += l; s = g; l = 0;}

}

It is easy to extend this implementation to allow decrements, explicit argu-
ments for increments/decrements, and generalize to other commutative monoids.

Grow-only bag A grow-only bag is implemented using a multi-headed list
as shown in Figure 1. The thread local view consists of a pointer to the local
head. A merge updates the global head of the list and does not change the local
views of other threads. A lookup that traverses the list starting from the local
head will never see an item that is concurrently added or merged.

Queue A hybrid mergeable queue can be implemented using a singly-linked
list similar to a linearizable queue. The items enqueued are added to the tail
of the list, while dequeue is performed from the head. A mergeable queue
instance contains a global view – (head, tail), which points to the head and
tail nodes respectively of the global list and local view – (ThreadLocal lhead,

ThreadLocal ltail), which are the head and the tail of the local list of each
thread. The local list collects the items enqueued by the thread that are not yet
merged. The merge atomically appends the local list to the global list (Figure
2). The time needed to merge a group of nodes is the same as the time needed
to enqueue a single node. By batching the enqueues, we can reduce the number
of synchronization operations, thus improving the overall throughput.

The dequeue operation directly updates the shared part of the list. For some
data types, an update on the shared part of the data structure should preserve
the old version, because local views may be keeping reference to it. However,
there is no weakRead, such as a weak lookup, defined on queue that must observe
a version before a concurrent dequeue. Hence, there is no need to keep those
versions, which simplifies the implementation.

5 Correctness Definitions

The data types designed using the global-local view model exhibit weaker con-
sistency than linearizability. We define the consistency model of mergeable and
hybrid data types, named GLConsistency , based on the notion of abstract
executions, following the formalization in [19].

An operation issued by a process on a shared object is represented by an
event e, which is a tuple (proc, kind, type, obj, ival, oval, stime, rtime), where

9



head

tail
lhead(t1)

ltail(t1)

lhead(t2)

ltail(t2)

(a) Two threads with local unmerged en-
queues.

head

tail

lhead(t1)

ltail(t1)

lhead(t2)

ltail(t2)

(b) Thread 1 merges its local queue.

Figure 2: Hybrid mergeable Queue.

• proc is the id of the thread issuing the event.

• kind denotes one of the operations defined in Section 3. (weakUpdate,
weakRead etc.).

• type is the type-specific update or query method performed by the oper-
ation.

• obj denotes the id of the object on which the operation is performed.

• ival refers to the input parameters for the update/query method.

• oval is return value of update/query method.

• stime is the event invocation time. We assume an abstract global time
that can be used to determine relative ordering of events happening in
concurrent. threads.

• rtime is the event return time.

A history H is a set of events. There are different relations defined on events
in a history. A session order so is a partial order on the events. Two events a, b
are related by so, a

so−→ b, if both are invoked by the same thread and a returns
before b is invoked. For other relations, we refer to [19].

An abstract execution is a multigraph A = (H, vis, ar). vis is a partial

order relation where a
vis−−→ b indicates that the effects of a are visible to b. For

example, if an increment operation is visible to a read, this means that the read
returns a value of the counter obtained after executing the increment. ar is a
total order that specifies how concurrent operations are ordered. For example,
two concurrent merge operations may be ordered based on the order of lock
acquisition.

Further, the context of an event cxt(A, e) , A|e,vis−1,vis,ar encodes the
events prior to e, which may influence its return value. The specification of
a data type is given by a function F that determines the set of intended return
values of an update or a query method in relation to its context.

We extend the formalism to specify GLConsistencyas follows. e.kind ∈
{su, sr, wu,wr, pull,merge} denotes the operations strongUpdate, strongRead,
weakUpdate, weakRead, pull and merge. ar|k denotes the subset of ar which
involves only the operations where e.kinds ∈ k and (a, b) ∈ ar|ka→kb

⇐⇒
a.kind ∈ ka ∧ b.kind ∈ kb ∧ a

ar−→ b. (Similarly, so|k defines the subset of so
restricted to k).
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GLConsistency is defined per object. Henceforth, to simplify the notation,
we assume that a history contains only operations on a single object. We can
extend the definition to include a general history by extending predicates to
restrict the operations on the same object. (For example, ar|merge ∩ ob ⊆ vis,

where a
ob−→ b if a, b are events applied on the same object). For a history

H and A, the set of all abstract executions on H, we say that H satisfies
GLConsistency, if there exists an abstract execution A ∈ A such that A
satisfies the following predicate.

GLConsistency(F) , GlobalOrder∧ThreadLocalOrder∧Vis∧RVal(F)

GlobalOrder , ar|su,merge ⊆ vis ∧ ar|su,merge→pull,sr ⊆ vis

ThreadLocalOrder , so|wu,wr,pull,merge ⊆ vis ∧ so|wu→sr ⊆ vis

Vis , vis = ar|su,merge ∪ ar|su,merge→pull,sr ∪ so|wu,wr,pull,merge ∪ so|wu→sr

RVal(F) , ∀op ∈ H : op.oval ∈ F(op, cxt(A, op))

The updates on the global copy (strongUpdate and merge) are serializable.
The reads from the global copy (strongRead and pull) observe events in this
order. This is defined by GlobalOrder. ThreadLocalOrder defines the
visibility of thread local operations. The visibility of a thread’s operation is
defined by the session order except for the strongUpdate, because strongUpdate
is executing only on the global copy. However, a strongRead observes the local
weakUpdates, which is captured by the predicate so|wu→sr ⊆ vis . In addition,
the visibility relation is restricted by Vis, guaranteeing that two operations from
different threads are related by visibility only if there is a synchronous operation
on the global view between them. (Note that this predicate is the union of the
predicates from GlobalOrder and ThreadLocalOrder).

If thread A performs weakInc;merge, then thread B performs pull;weakValue,
GlobalOrder guarantees that thread A’s merge is visible to thread B’s pull
which is again visible to its weakValue by ThreadLocalOrder and by tran-
sitivity weakInc is visible to weakValue. If the thread performs a weakInc, and
then a weakValue, weakInc is visible to weakValue. However, a strongInc is not
visible to a following weakValue, unless there is a merge or pull before the read.

RVal is the return value consistency, which guarantees that the return value
of all operations belongs to intended values based on the specification F .

6 Evaluation

We evaluated the performance and scalability of the mergeable counter and the
hybrid mergeable queue using different micro-benchmarks. As an example of
real applications, we employed the hybrid queue in a breadth-first traversal on
graphs. We implemented the counter in C++ and the queue in Java.

The evaluations are performed on a 12 core 2.40GHz Intel(R) Xeon(R)
CPU E5-2620 processor (2 NUMA nodes) with 2-way hyper-threading, under
linux 4.4.0-62 Ubuntu x86 64 and openjdk version 1.8.0 121, clang version 4.0.0-
svn297204-1, boost 1.58.0.1ubuntu1.
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Figure 3: Throughput vs Overshoot of mergeable counter with different merge
frequency.

Counter We provide two variants of a mergeable counter and compare them
with an atomic counter, implemented using the atomic compare and swap op-
eration. The first version implements a weak mergeable counter, and is based
on making threads increment their local count and periodically merge with
the global count, also using atomics for efficiency. In the experiment, we al-
low threads to increment the shared mergeable counter until a target value is
reached. Since threads might not know about non-merged increments from other
threads, they typically end up overshooting the target. For this experiment, the
target is set to 5 × 106 increments. We evaluated several merge frequencies,
labeled with how many local increments are allowed between merges, and mea-
sured their throughput and the overshoot from the target. Figure 3 shows
that the throughput scales with the number of threads and with the merge fre-
quency. At the same time, the overshoot increases. However, the percentage of
the overshoot is small. (Notice that overshoot is upper bound by the number
of threads multiplied by the merge frequency, as this reflects at any given time
the amount of increments not yet accounted for.) Points in the lines are labeled
with the number of threads used. As expected, the system does not scale be-
yond the point where the number of threads exceeds the number of cores (i.e at
24 threads). Also, note that for a single thread, overshoot is zero and thus the
value is outside the logarithmic scale.

Figure 4 shows the throughput of the mergeable counter compared to an
atomic counter implemented using compare and swap. The atomic counter never
overshoots the target, but since threads are always competing on the increment,
performance is very low and no speedup is obtained from multi-threading. In
contrast, the mergeable counter can scale linearly up to a good fraction of the
available concurrency, in particular with merge frequency of ≥ 4096.

While some applications could tolerate an overshoot, in general, applications
will require a tight target enforcement. To address this, we provide a variant
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Figure 4: Throughput of mergeable
counter vs atomic counter.
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Figure 5: Throughput of hybrid
mergeable counter (overshoot free) vs
atomic counter.

of the mergeable counter that makes a hybrid use of initial weak local incre-
ments and later switches to atomic strong increments when approaching the
target. The first thread that, upon the periodic merges, detects that it is close
to the target, initiates a barrier synchronization to ensure that all threads have
switched to strong operations. Figure 5 shows that under this approach, over-
shoot is eliminated while the performance is mostly identical to the mergeable
counter. In general, the hybrid approach is efficient as long as the target is
much larger than the merge frequency, since this limits the proportion of the
execution done under linearizability.

Queue To evaluate the scalability of hybrid mergeable queue (referred to as
mergeable queue), we implemented four different queues in Java – 1) a lock-
based linearizable queue based on Michael and Scott’s 2-lock queue [14], 2) a
lock-based mergeable queue which uses similar 2-lock mechanism, 3) a lock-free
linearizable queue adapted from Michael and Scott’s lock-free queue [14] and
4) a lock-free mergeable queue. We evaluated the time to do a total of 5× 106

enqueues and dequeues. Figure 6 shows the result, evaluating mergeable queues
with different merge frequencies m (a merge is performed by a thread after m
enqueues). In this experiment, we forced half of the threads to run on one
NUMA node and the other half on the second NUMA node. For both lock-
based and lock-free versions, the mergeable queue is faster than the linearizable
counterpart. Since this is a high-contention workload, the lock-based version
performs better than the lock-free version. Unlike the mergeable counter, in-
creasing merge frequency from 8 to 64 does not improve the performance sig-
nificantly. The reason is that, dequeue is always executed synchronously which
shadows the performance gain from asynchronous enqueues.

Breadth-First Traversal A standard breadth-first traversal algorithm using
queues can be parallelized using concurrent queues. We evaluated four versions
of the algorithm using different queue implementations, that traversed randomly
generated graphs of size of 2 ×106 vertices and 2 × 107 edges. Unlike the
micro-benchmark for the queue, there is no fixed merge frequency. The threads
merge their local queue at the end of processing each level. Figure 7 shows
the speedup of each version compared to a single-threaded implementation.
Mergeable queues scale better than their linearizable counterparts. The speedup
of the lock-free mergeable queue is significantly higher than that of the others,
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and scales almost linearly until 16 threads. Beyond 16 threads, the number of
vertices processed by each thread at each level is reduced, as they are divided
among the threads, leading to smaller merge frequencies. We believe the sudden
drop in the speedup of lock-based queues after 12 threads is due to the additional
cost in synchronization to the second NUMA core. Compared to the high-
contention micro-benchmark from Figure 6, this is a low-contention workload
because a significant amount of time is spent in processing the nodes rather
than updating the queue.

7 Conclusion

An ever-increasing number of cores in combination with heterogeneous access
latencies at different cache levels have advanced the spectrum of attainable
performance from multi-thread programming. At the same time, this breaks
the transparency with respect to data locality. As processor components be-
come more numerous and spatially distributed, the cost of synchronization and
communication among distant components will keep increasing in comparison
to ones that are more closely located. When building internet-scale distributed
systems, similar concerns lead to the design of scalable systems that limit global
synchronization and operate locally when possible [12].

Incorporating more information about the respective datatype semantics is
crucial for datatype designs that are more parsimonious regarding synchroniza-
tion. CRDTs succeed in capturing datatypes with clear concurrency semantics
and are now common components in internet-scale systems. However, they do
not migrate trivially to shared-memory architectures due to high computational
costs from merge functions, which becomes apparent once network communica-
tion is removed.

In this paper, we define the global-local view model as base for a framework
that allows capturing the semantics of multi-view datatypes. The global-local
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view distinguishes between local fast state and distant shared state where op-
erations need to be synchronized. This distinction allows the datatype designer
to explore the trade-offs in the design when using weak or strong operations.
Our approach enables speedups in order of magnitudes while preserving the
datatypes’ target behavior. We believe that the examples shown here are just
the tip of the iceberg in terms of applicable datatypes. It is quite possible that
further increments of the number of components involved will lead to a multi-tier
model with more levels than the current binary, local vs global, scheme.
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