
NUMA Optimizations for Algorithmic
Skeletons

Paul Metzger1(B), Murray Cole1, and Christian Fensch2

1 School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
{paul.metzger,m.cole}@inf.ed.ac.uk

2 MACS, Heriot-Watt University, Edinburgh EH14 4AS, UK
c.fensch@hw.ac.uk

Abstract. To address NUMA performance anomalies, programmers
often resort to application specific optimizations that are not transferable
to other programs, or to generic optimizations that do not perform well
in all cases. Skeleton based programming models allow NUMA optimiza-
tions to be abstracted on a pattern-by-pattern basis, freeing program-
mers from this complexity. As a case study, we investigate computations
that can be implemented with stencil skeletons. We present an analysis of
the behavior of a range of simple and complex stencil programs from the
NAS and Rodinia benchmark suites, under state-of-the-art NUMA aware
page placement (PP) schemes. We show that even though an application
(or skeleton) may have implemented the correct, intuitive scheduling of
data and work to threads, the resulting performance can be disrupted
by an inappropriate PP scheme. In contrast, we show that a NUMA PP-
aware stencil implementation scheme can achieve speed ups of up to 2x
over a similar scheme which uses the Linux default PP, and that this
works across a set of complex stencil applications. Furthermore, we show
that a supposed PP performance optimization in the Linux kernel never
improves and in some cases degrades stencil performance by up to 0.27x
and should therefore be deactivated by stencil skeleton implementations.
Finally, we show that further speed ups of up to 1.1x can be achieved by
addressing a work imbalance issue caused by poor conventional under-
standing of NUMA PP.

1 Introduction

Modern systems have complex and non-uniform memory organizations to meet
the high bandwidth requirements of increasing core counts. For example, multi-
socket systems feature multiple memory controllers that are spread over sockets
(see Fig. 1). CPUs can access memory that is attached to a remote memory
controller via interconnects. The downside of this is that memory accesses are
non-uniform in terms of latency and bandwidth. Thus, great care must be taken
when choosing the right location for a memory page at a given time during
program execution. These complexities in memory systems of NUMA machines
cause hard to predict performance anomalies [1,2].
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Fig. 1. Illustration of a NUMA system with two NUMA nodes.

NUMA aware program optimizations that address this problem are at the
extremes of a spectrum. At one end are generic NUMA page placement (PP)
schemes, such as First-Touch, Interleaved, and the Linux automatic NUMA Bal-
ancing feature which are known to exhibit pathological behavior in hard to pre-
dict situations [3,4]. At the other end of the spectrum are application specific
memory optimizations such as shared variable privatization. However, transfer-
ring these to other applications is a labor-intensive process. Skeleton-based pro-
gramming systems [5–7] have the potential to support a compromise position:
NUMA aware optimizations that are transparently applicable across the class
of computations captured by each skeleton. In support of this hypothesis, we
present a case study for stencil computations. NUMA aware PP optimizations
for other skeletons will be investigated in the future. We conduct an analysis of
the behavior of stencil applications from the NAS-PB and Rodinia benchmark
suites, comparing their performance under state-of-the-art NUMA PP schemes
with performance under a stencil-skeleton-aware NUMA PP scheme, and its
extension with a novel work distribution heuristic. We show that

– the stencil-skeleton-aware NUMA PP scheme has good applicability across
a wide range of stencil computations, well beyond the simple Jacobi-style
stencils which motivate it, offering speed-ups of up to 2x over similar state-
of-the-art schemes.

– automatic NUMA Balancing, a generic optimization in the Linux kernel, is
actively disruptive of stencil performance, diminishing performance by up to
0.27x, and so should be disabled by stencil skeletons.

– our novel work distribution approach further speeds up applications by 1.1x.

The remainder of this paper is structured as follows: Section 2 provides a
motivating example that demonstrates the possible performance benefits of sten-
cil aware PP. Section 3 introduces stencil computations and standard NUMA PP
schemes. Section 4 motivates and describes our stencil aware PP and work dis-
tribution scheme, and provides an overview of the experimental program which
informs and evaluates it. Section 5 describes the experimental set up and Sect. 6
presents experimental results. Finally, Sects. 7 and 8 discuss related work and
conclusions.

2 Motivating Example

As has previously been demonstrated for individual applications [8–11], this
section provides an example which confirms that performance improvements
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Fig. 2. (a) Execution times of the NAS-PB ft benchmark with different page placement
(PP) schemes. The letters s, a, b, c indicate the standard problem set sizes in ascending
order. (b) Access latency histogram of ft with the largest input data set.

Fig. 3. Jacobi stencils (a + b), a Gauss-Seidel stencil (c), a stencil with a dynamic
neighborhood (d), a butterfly divide-and-conquer stencil (e) and the multigrid method
(f). (Color figure online)

over state of the art schemes can be achieved by adding application awareness
to the page placement (PP) process. We use the NAS-PB Fourier Transforma-
tion (ft) benchmark as a case-study. Figure 2a shows execution times of ft with
different PP schemes. Stencil Aware PP performs significantly better than the
other schemes in all cases and the maximum speed up is 57%. We sampled the
number of memory accesses that fall into set latency ranges to better understand
the performance benefits (see Fig. 2b). The results indicate that Stencil Aware
and Interleaved PP take pressure from interconnects and memory controllers
compared to First-Touch PP as they use all interconnects and memory con-
trollers evenly (see Sect. 3 for explanations of the state of the art PP schemes).
Stencil Aware PP also minimizes the number of high latency remote memory
accesses and, therefore, performs better than Interleaved PP.

3 Background

3.1 Stencil Computations

Stencil computations update elements in a buffer based on the values in the ele-
ments’ neighborhoods. The neighborhoods are regular and predictable. Figure 3a
illustrates this for a single element (grey) and its neigborhood (green). Updates
are performed in a single sweep or multiple iterations. The remainder of this
subsection discusses different types of stencil computations.
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Fig. 4. First-Touch (a) and Interleaved
(b) page placement.

Fig. 5. Illustration of parallelization, col-
location and remote memory access (red)
when stencil aware PP is used. Elements
above the red line are placed on NUMA
node M-1 and elements below are placed
on node M. (Color figure online)

Jacobi stencil computations are conceptually the simplest stencils as their
neighbourhood and input grid have a fixed size and shape. Shape and dimension-
ality of the neighborhood can vary across Jacobi stencils (see, for example, Fig. 3a
and b). Gauss-Seidel stencils use values from the current and the previous itera-
tion. In Fig. 3c elements at the top and the left-hand side are from the current and
the elements at the bottom and right-hand side are from the previous iteration.
Some stencils have a variable neighborhood that changes depending on the input
data. The stencil in Fig. 3d uses either the green or the green and the dark red ele-
ments as input. The red black method arranges the elements in the input buffer
like a checker board. Black elements are updated based on values of neighboring
red elements and vice versa. The Butterfly divide-and-conquer method works in
phases and changes the size of the stencil in each phase. Figure 3e illustrates this
based on the computation of one element. Arrows indicate which elements of the
input buffer are read in each phase. The multigrid method changes the resolution
of the in- and output data dynamically (see Fig. 3f).

3.2 Page Placement Schemes

This section presents state of the art PP schemes. First-Touch Page Placement
allocates pages on the same NUMA node as cores that first access them and is the
default scheme of Linux. Figure 4a illustrates this PP policy. All pages are placed
on node zero if the thread that runs on this node accesses them first. First-Touch
PP optimises for data locality if pages are mostly accessed by threads that access
them first. Interleaved Page Placement places pages on NUMA nodes in a round
robin fashion and can be used as an alternative to First-Touch PP (see Fig. 4b).
This scheme distributes memory accesses equally across memory controllers and
interconnects but fails to optimise for data locality. Automatic NUMA Balancing
migrates pages and threads across NUMA nodes, informed by run-time memory
access statistics, to increase data locality. This is known to cause page thrashing
and an extension called Pseudo-Interleaving has been proposed to address this
[3]. Automatic NUMA Balancing is activated by default on Linux systems (i.e.
in addition to First-Touch).



594 P. Metzger et al.

4 Stencil Aware Page Placement and Work Distribution
for NUMA Systems

This section describes our stencil aware page placement (PP) and work distribu-
tion scheme and provides an overview of the experimental program which informs
and evaluates it. We first describe a basic stencil aware NUMA PP scheme, as
motivated in Sect. 2 and explain how this may be vulnerable to disruption by
LinuxNUMA, a phenomenon which we will evaluate in Sect. 6. We then explain
why the basic stencil aware PP scheme may experience performance degrada-
tion due to uneven distribution of remote accesses, and propose a novel work
distribution technique which addresses this. The new PP and work distribution
scheme are evaluated in Sect. 6.

A Basic Stencil Aware Page Placement Scheme. Motivated by previously
reported ad-hoc PP experiments, this scheme places pages on NUMA nodes
that access them most frequently to improve data locality prior to a compu-
tation. Figure 5 illustrates this with a simple 2D Jacobi stencil. Stencil aware
PP collocates thread N with the Nth memory block on NUMA node M, and
so on. Note that in doing so we are going beyond conventional stencil-skeleton
wisdom of simply associating threads with specific data partitions (and hence
work), in order to ensure that this allocation is also respected by the underlying
PP scheme. We also investigate whether this can be achieved for more complex
types of stencil computations than simple Jacobi stencils (see Sect. 3.1).

Performance Degradation Through Automatic NUMA Balancing. NUMA Bal-
ancing is known to cause page thrashing if multiple NUMA nodes access the
same pages in an alternating fashion [4]. NUMA Balancing then migrates pages
back and forth between these nodes. The stencil access pattern causes some
pages to be shared between two NUMA nodes in each iteration of the sten-
cil computation. In our experiments we investigate whether this effect degrades
performance predictably for stencil computations.

Bad Work Distribution and Our NUMA Aware Scheme. The intuitive work dis-
tribution scheme for stencils allocates an equal share of grid points to each
thread. However, this fails to consider the potential for unequal NUMA mem-
ory accesses to impact upon the time it takes to complete the corresponding
work. Figure 5 illustrates this for one element with a simple 2D Jacobi stencil.
Meanwhile, some threads are not penalized by remote memory accesses and so
complete their iteration sooner. These threads must wait on a barrier after each
iteration, potentially creating a significant imbalance in waiting time and signi-
fying a wasted resource. Our experiments investigate the extent to which this
phenomenon occurs.

We propose and evaluate a novel work distribution scheme which aims to
reduce the idle waiting time of threads that do not access remote memory.
This work distribution reflects the different access latencies in NUMA systems.
Threads that are penalized by high latency remote memory accesses are assigned
smaller chunks of input data than threads that access only local memory. Our
experiments evaluate the impact of this new scheme.
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5 Experimental Setup

To reduce the complexity of our experiments, we did not use a skeleton library
but implemented the Stencil Aware PP and work distribution schemes, which
could be implemented by a skeleton library, by hand. To enact the basic PP
policy on top of the default OS First-Touch policy we introduce OpenMP code
that creates and fills the stencil buffers with initial values. This parallel code
imitates the memory access patterns of subsequent stencil computations, and
so places pages on NUMA nodes that subsequently access them. In the srad
benchmarks, buffers for precalculated indices are interleaved when Stencil Aware
PP is used as the entire buffers are accessed by all threads. Stencil Aware PP
can only work if the OS cannot migrate threads to another NUMA node, since
otherwise, pages that these migrated threads access would then be on a remote
NUMA node. Therefore, we use thread pinning to prevent this. Finally, the
stencil iterations are implemented with an OpenMP parallel for region, using
the static scheduling.

Table 1 lists details of the test systems. Machine A’s kernel uses Pseudo-
Interleaving (see Sect. 3.2) [3]. Benchmarks are taken from the Rodinia [12] and
NPB-PB [13] suites (see Table 2) and are compiled with ICC 17.0.4 and the -O2
flag. The standard inputs of the benchmark applications are used except for the
largest hotspot input due to very long execution time, and the iteration count
that the Rodinia benchmarks perform are made higher to reduce noise. Five
samples are taken in the access latency experiment in Sect. 2 and at least ten
samples are taken in each of the other experiments. Our timing experiments are
reported with 95% confidence intervals. Our speed ups are reported as the ratio
of the means of the relevant measurements. Spinning time and access latency
related experiments were conducted with Intel V-Tune XE 2017.

Table 1. Hardware details of the test machines.

Machine name Machine A Machine B

CPU Model Xeon L7555 Xeon E5-2697 v2

Sockets 4 2

Cores/Socket 8 12

LLC/Socket 18MB 30MB

Mem. Contr./Socket 1 1

QPI Band./Link 5.86GT/s 8GT/s

Hyperthr. Deactivated Deactivated

Prefetchers Active Active

Linux Kernel 4.4.36 3.10.0



596 P. Metzger et al.

Table 2. Benchmark application details. The letter s to c and numbers 64 to 8192
indicate standard input sizes.

App. Stencil type Source Memory consumption

Srad v1 Jacobi Rod 16MB

Srad v2 Jacobi Rod 122MB

Hotspot Jacobi Rod 64: 10MB; 128: 12MB; 256: 11MB; 512: 15MB; 1024:
19MB; 2048: 54MB; 4096: 202MB; 8192: 800MB

MG Multigrid NPB S: 10MB; A: 619MB; B: 620MB; C: 4,736MB

FT Butterfly D&C NPB S: 21MB; A: 450MB; B: 1,760MB; C: 6,897MB

6 Evaluation

6.1 Stencil Aware Page Placement

To assess the performance of Stencil Aware PP, we compare it in Fig. 6 against
two state of the art PP schemes available on Linux: First-Touch and Interleaved
PP. In most cases, Stencil Aware PP either matches or improves performance
over state of the art PP schemes. Large speed ups over First-Touch PP without
pinning can be observed for very small problem sizes i.e. mg with problem size
s and hotspot with problem sizes 64 to 512. A maximum speed up of 12x has
been achieved with the hotspot benchmark on machine A.

Results with small problem sizes and the standard PP schemes show that
pinning significantly benefits performance. Stencil Aware PP still improves per-
formance by up to 2x over First-Touch PP with pinning, and pinning has a very
small, and in some cases no influence on performance for larger problem sizes.
In only a small number of cases do the standard schemes with pinning perform
slightly better. For example, the standard PP schemes perform better than Sten-
cil Aware PP when we measure the total execution time with hotspot 64, 128
and 256 on machine A. However, Stencil Aware PP performs better in these
cases when we measure the execution time spent in the stencil iterations. This
indicates that Stencil Aware PP still improves the performance of the stencil
computations but that the overhead of the page placement outweighs the per-
formance benefits of Stencil Aware PP in these few instances. In summary, our
results show that Stencil Aware PP is a viable alternative to the current built-in
schemes of Linux and should be used instead.

6.2 Performance Degradation Through NUMA Balancing

To assess the impact of automatic NUMA Balancing (from now referred to as
“LinuxNUMA”) we compare Stencil Aware PP without LinuxNUMA against all
PP schemes with LinuxNUMA in Fig. 7. Most of the applications and schemes
perform worse with LinuxNUMA than Stencil Aware PP without LinuxNUMA.
In the few cases where LinuxNUMA is beneficial the differences are small (max:
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Fig. 6. Speed ups over standard implementations without pinning and the standard
Linux First-Touch PP scheme with the total execution time and the execution time
spent in the stencil iterations.

0.09x) and present on only one machine, or the PP schemes already perform
slightly better than our scheme even without LinuxNUMA (see hotspot with
input size 4096 and 8192 in Fig. 6.1) and continue to do so with LinuxNUMA.
It is important to note that LinuxNUMA degrades the performance of Stencil
Aware PP in all cases, by up to 0.27x with mg and input c on machine A. Thus,
in addition to using Stencil Aware PP, LinuxNUMA should be deactivated for
stencil computations (for example, in stencil skeleton libraries).
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Fig. 7. Speed up with LinuxNUMA over our Stencil Aware PP without LinuxNUMA.
Most speed ups are below 1.0 i.e. are slow downs indicating the superiority of our
scheme.

6.3 Bad Work Distribution and Stencil Aware Work Distribution

The uneven idle time effect discussed in Sect. 4 is present to varying degrees
across our benchmark suite and machines. The expected variation in idle times
occurs with the srad v2 benchmark on Machine A and B as shown in Fig. 8.
Adjacent cores in Fig. 8 share data and cores that share data with a remote
NUMA node, like core 7 and 8 on machine A have the expected, consistently
lower spinning times which indicate that they are slowed down by remote mem-
ory accesses as discussed in Sect. 4. The expected variations are also visible for
the NAS-PB mg benchmark on Machine A with input size a and b. However,
the idle time differences are very small and statistically insignificant.

In contrast, the effect is not visible in other cases for the following reasons.
For the NAS-PB ft benchmark implementation the stencil has a 2D neighbor-
hood and the input buffer is 3D. The computation is parallelized over the third
dimension of the input buffer and, therefore, the cores do not share data, and
so the idle time imbalance is not present. Meanwhile, the data set of srad v1 fits
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Fig. 8. Uneven idle times with srad v2 on Machine A (a + b) and B (c + d).

into the combined LLCs which causes the latency differences between local and
remote memory accesses to the LLCs to be very small and so the variations of
the idle times become too small to report.

6.4 NUMA and Stencil Aware Work Distribution

We compare our work distribution scheme with a range of alternatives, all of
which are extensions of our basic pinned, Stencil Aware PP scheme as intro-
duced in Sect. 4. These are created by selecting different OpenMP schedules
for the stencil iterations. The best work distribution for our scheme was deter-
mined experimentally. Figure 9 shows execution times with OpenMP’s built-in
schedules and with our stencil aware work distribution. “Static” corresponds to
our basic stencil aware PP scheme from Sect. 4. Our new stencil aware work
distribution scheme achieves improved performance of up to 1.1x for srad v2.
In contrast, none of the standard OpenMP schedules can mitigate the negative
effects of the uneven idle time distribution. This shows that our scheme addresses
the work imbalance caused by variable NUMA memory latencies. To make this
applicable within a generic stencil scheme it would be important to predict the
stencil instances for which an improvement is achievable.
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Fig. 9. Execution times of srad v2 with OpenMP schedules and with our NUMA and
stencil aware work distribution (a). A direct comparison of the best OpenMP schedule
with the stencil aware work distribution (b). Static, guided, dynamic and auto are
OpenMP schedules. “Static” corresponds to our basic stencil aware PP scheme from
Sect. 4. The stencil aware work distribution reflects the uneven idle times discussed in
Sect. 6.3.

7 Related Work

We first review state of the art page placement schemes, then NUMA stencil opti-
mizations and, lastly, work on NUMA aware schedulers and work distribution.

Carrefour reduces congestion on interconnects and memory controllers via
page collocation, replication and interleaving [14]. It has to monitor memory
accesses to inform the usage of these techniques and cannot, like our approach,
leverage information about the structure of a computation that is available prior
to execution.

Mechanisms for automatic thread and page migration have been developed
for the Linux kernel [3,15–17]. These mechanisms monitor memory accesses and,
therefore, cannot act until sufficient data is collected. This monitoring based app-
roach can result in pathological behavior such as page [18,19] and task bounc-
ing [3,20]. Our scheme can find an optimal task and page placements before a
computation starts.

Stencil aware memory management for NUMA systems has been mentioned
in side notes [21–24]. To the best of our knowledge we are the first to report an
in-depth analysis of stencil aware memory management for NUMA systems with
a broad range of stencil types and problem sizes.

Pilla et al. present a NUMA-Aware scheduler [25]. The scheduler considers
the communication between concurrently executing threads and collocates them
on NUMA nodes to minimize communication across CPU boundaries. This app-
roach suffers from similar problems as other monitoring based approaches (see
above). Chen and Olivier et al. present work stealing for NUMA systems [26,27].
Their approach reschedules work at run time in case work was not distributed
equally. Our approach distributes work equally before a computation starts by
taking the memory system of the target system and stencil specific memory
access patterns into account.
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8 Conclusion and Future Work

We argue that NUMA optimizations should be embedded in skeleton implemen-
tations by utilizing implicit knowledge encoded in them. We present a case study
with stencil computations. We evaluate a stencil aware page placement (PP)
scheme that exploits the regular and predictable stencil memory access patterns.
We then investigate two further optimizations that build on Stencil Aware PP.
Firstly, we show that automatic NUMA Balancing, an advanced optimization
technique in the Linux kernel, degrades the performance of stencil computations
when Stencil Aware PP is used. Secondly, we investigate a novel stencil and
NUMA aware work distribution scheme. Stencil Aware PP improves the perfor-
mance of applications by up to 12x over standard PP schemes if they are not
combined with pinning and 2x if they are combined with pinning. Furthermore,
stencil aware PP never degrades performance. NUMA Balancing degrades the
performance of stencil applications by up to 0.27x if stencil aware PP is used
and should be deactivated. Finally, we show that the performance of some sten-
cil computations can be further improved by up to 1.1x with our stencil aware
work distribution. Future work includes a heuristic that predicts whether the
new stencil aware work distribution scheme will be beneficial. We plan to inves-
tigate a model for our NUMA and stencil aware work distribution that is based
on parameters of a given stencil computation and target NUMA architecture.
Furthermore, we will consider the fact that, in multiprogrammed scenarios, the
proposed deactivation of LinuxNUMA has an impact on other applications that
run on the system. Finally, we will investigate NUMA optimizations for further
skeletons.
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