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Abstract. We implement two novel algorithms for sparse-matrix dense-
matrix multiplication (SpMM) on the GPU. Our algorithms expect the
sparse input in the popular compressed-sparse-row (CSR) format and
thus do not require expensive format conversion. While previous SpMM
work concentrates on thread-level parallelism, we additionally focus on
latency hiding with instruction-level parallelism and load-balancing. We
show, both theoretically and experimentally, that the proposed SpMM
is a better fit for the GPU than previous approaches. We identify a
key memory access pattern that allows efficient access into both in-
put and output matrices that is crucial to getting excellent performance
on SpMM. By combining these two ingredients—(i) merge-based load-
balancing and (ii) row-major coalesced memory access—we demonstrate
a 4.1× peak speedup and a 31.7% geomean speedup over state-of-the-art
SpMM implementations on real-world datasets.
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1 Introduction

Many algorithms in machine learning, data analysis, and graph analysis can be
organized such that the bulk of the computation is structured as sparse matrix-
dense matrix multiplication (SpMM). Examples include inference on pruned neu-
ral networks [1], graph centrality calculations [2], all-pairs shortest paths [3],
iterative solvers with multiple righthand sides [4], blocked eigensolvers such as
Blocked Lanczos [5] or Locally Optimal Block Preconditioned Conjugate Gradi-
ent (LOBPCG) [6], sparse matrix precision estimation [7], multi-scale spectral
graph decomposition [8], non-negative matrix factorization [9], and tomographic
reconstruction [10]. SpMM is also one of the possible instantiations of the most
prevalent GraphBLAS primitive, namely the matrix-matrix multiplication oper-
ation on a semiring (GrB mxm) [11], depending on the sparsity of operands.

Given an m-by-k sparse matrix A and a k-by-n dense matrix B, SpMM com-
putes an m-by-n dense matrix C = AB. We assume n� m and n� k, that is
to say, SpMM is multiplying a sparse matrix with a tall-skinny dense matrix. We
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choose the most common sparse matrix format—compressed sparse row (CSR)—
because we avoid the substantial cost of matrix conversion. However, CSR results
in a challenging problem on the GPU, because the sparse row can vary signifi-
cantly in how many nonzeroes there are. We combine recent advances from the
related problem of sparse matrix-dense vector multiplication (SpMV) [12–14] and
a key memory access pattern we identify as critical to SpMM performance in or-
der to propose and implement two SpMM algorithms that demonstrate superior
performance to state-of-the-art specialized matrix formats and vendor-supplied
CSR SpMM implementations.

Our main contributions in this paper are:

1. We generalize two main classes of SpMV algorithms—(1) row splitting and
(2) merge-based—for the SpMM problem and implement them on the GPU.

2. We introduce a simple heuristic that selects between the two kernels with
an accuracy of 99.3% compared to optimal.

3. Using our multi-algorithm and heuristic, we achieve a geomean speed-up of
31.7% and up to a maximum of 4.1x speed-up over state-of-the-art SpMM im-
plementations over 157 datasets from the SuiteSparse Matrix Collection [15].

2 Background & Preliminaries

2.1 GPUs

Modern GPUs are throughput-oriented manycore processors that rely on large-
scale multithreading to attain high computational throughput and hide memory
access time. The latest generation of NVIDIA GPUs have up to 80 “stream-
ing multiprocessors” (SMs), each with up to hundreds of arithmetic logic units
(ALUs). GPU programs are called kernels, which run a large number of threads
in parallel in a single-program, multiple-data (SPMD) fashion.

The underlying hardware runs an instruction on each SM on each clock cy-
cle on a warp of 32 threads in lockstep. The largest parallel unit that can be
synchronized within a GPU kernel is called a cooperative thread array (CTA),
which is composed of warps. For problems that require irregular data access, a
successful GPU implementation needs to (1) ensure coalesced memory access to
external memory and efficiently use the memory hierarchy, (2) minimize thread
divergence within a warp, and (3) maintain high occupancy, which is a measure
of how many threads are available to run on the implementation on the GPU.

2.2 Sparse matrix formats and SpMM

An m × n matrix is often called sparse if its number of nonzeroes nnz is small
enough compared to O(mn) such that it makes sense to take advantage of spar-
sity. The compressed sparse row (CSR) format stores only the column indices
and values of nonzeroes within a row. The start and end of each row are then
stored in terms of the column indices and value in a row offsets (or row point-
ers) array. Hence, CSR only requires m + 2nnz memory for storage. We say a



dense matrix is in row-major order when successive elements in the same row
are contiguous in memory. Similarly, we say it is in column-major order when
successive elements in the same column are contiguous in memory.

Similarly to sparse matrix-dense vector multiplication (SpMV), a desire to
achieve good performance on SpMM has inspired innovation in matrix storage
formatting [16–18]. These custom formats and encodings take advantage of the
matrix structure and underlying machine architecture. Even only counting GPU
processors, there exist more than sixty specialized SpMV algorithms and sparse
matrix formats [19].

The vendor-shipped library cuSPARSE library provides two functions csrmm
and csrmm2 for SpMM on CSR-format input matrices [20]. The former expects
a column-major input dense matrix and generates column-major output, while
the latter expects row-major input and generates column-major output. Among
many efforts to define and characterize alternate matrix formats for SpMM are a
variant of ELLPACK called ELLPACK-R [16] and a variant of Sliced ELLPACK
called SELL-P [17]. Hong et al. performs dynamic load-balancing by separating
the sparse matrix into heavy and light rows. The heavy rows are processed by
CSR and the light rows by doubly compressed sparse row (DCSR) in order to
take advantage of tiling [21].

However, there is a real cost to deviating from the standard CSR encoding.
Firstly, the rest of the computation pipeline will need to convert from CSR to
another format to run SpMM and convert back. This process may take longer
than the SpMM operation itself. Secondly, the pipeline will need to reserve valu-
able memory to store multiple copies of the same matrix—one in CSR format,
another in the format used for SpMM.

3 Design Principles

In this section, we discuss two design principles that every irregular problem on
the GPU must follow for good performance. Ideally, we attain full utilization
of the GPU hardware, where a ready warp can be run on every cycle, all com-
putational units are doing useful work on every cycle, and all memory accesses
are coalesced. Our principles for reaching this goal are (1) effective latency-
hiding through a combination of thread- and instruction-level parallelism (TLP
and ILP) and (2) efficient load-balancing. Then we will look at state-of-the-art
SpMM implementations to understand their inefficiencies.

3.1 Latency hiding with TLP and ILP

Memory operations to a GPU’s main memory take hundreds of clock cycles. The
GPU’s primary technique for hiding the cost of these long-latency operations is
through thread-level parallelism (TLP). Effective use of TLP requires that the
programmer give the GPU enough work so that when a GPU warp of threads
issues a memory request, the GPU scheduler puts that warp to sleep and another
ready warp becomes active. If enough warps are resident on the GPU (if we have



enough TLP), switching between warps can completely hide the cost of a long-
latency operation. We quantify the amount of TLP in a program as occupancy,
the ratio of available (issued) warps to the maximum number of warps that can
be supported by the GPU. Higher occupancy yields better latency-hiding ability,
which allows us to approach full utilization.

Another latency-hiding strategy is exploiting instruction-level parallelism
(ILP) and its ability to take advantage of overlapping the latency of multiple
memory operations within a single thread. Because the GPU’s memory system
is deeply pipelined, a thread can potentially issue multiple independent long-
latency operations before becoming inactive, and those multiple operations will
collectively incur roughly the same latency as a single operation. While this
yields a significant performance advantage, it relies on the programmer exposing
independent memory operations to the hardware. We can achieve this goal by
assigning multiple independent tasks to the same thread (“thread coarsening”).

GPUs have a fixed number of registers. TLP requires many resident warps,
each of which requires registers. ILP increases the work per thread, so each thread
requires more registers. Thus TLP and ILP are in opposition, and attaining full
utilization requires carefully balancing both techniques. While TLP is commonly
used across all of GPU computing, ILP is a less explored area, with prior work
limited to dense linear algebra [22] and microcode optimization [23].

3.2 Load-balancing

We now turn to the problem of ensuring that all computational units are doing
useful work on every cycle, and that the memory accesses from those warps are
coalesced to ensure peak memory performance. In the context of SpMV and
SpMM, this “load-balancing” problem has two aspects:

1. Load imbalance across warps. Some CTAs or warps may be assigned less
work than others, which may lead to these less-loaded computation units
being idle while the more loaded ones continue to do useful work. In this
paper, we term this “Type 1” load imbalance.

2. Load imbalance within a warp, in two ways, which we collectively call “Type
2” load imbalance. (a) Some warps may not have enough work to occupy all
32 threads in the warp. In this case, thread processors are idle, and we lose
performance. (b) Some warps may assign different tasks to different threads.
In this case, SIMD execution within a thread means that some threads are
idle while other threads are running; moreover, the divergence in execution
across the warp means memory accesses across the entire warp are unlikely
to be coalesced.

For irregular matrices, we claim that SpMV and SpMM are fundamentally
load-balancing problems on the GPU. As evidence, Figure 1 shows load im-
balance in a vendor-supplied implementation from a synthetic benchmark. The
experimental setup is described in Section 5. The right side of the x-axis repre-
sents Type 1 load imbalance, where long matrix rows are not divided enough,
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Fig. 1. Synthetic benchmark showing NVIDIA cuSPARSE SpMV and SpMM perfor-
mance as a function of matrix dimensions on a Tesla K40c, and SpMM’s achieved
occupancy and warp efficiency (inverse of divergence).

resulting in some computation resources on the GPU remaining idle while others
are overburdened. The left size of the x-axis represents Type 2 load imbalance
where too many computational resources are allocated to each row, so some
remain idle.

4 Parallelizations of CSR SpMM

This section reviews three existing parallelizations of SpMV through the lens of
the design principles from Section 3. While our implementations of SpMM share
some characteristics with SpMV parallelizations, we also faced several different
design decisions for SpMM, which we discuss below. The three SpMV variants
are illustrated in Figure 2 and summarized here:

1. Row split [24]: Assigns an equal number of rows to each processor.
2. Merge based: Performs two-phase decomposition—the first kernel divides

work evenly amongst CTAs, then the second kernel processes the work.
(a) Nonzero split [12,13]: Assign an equal number of nonzeroes per processor.

Then do a 1-D (1-dimensional) binary search on row offsets to determine
at which row to start.

(b) Merge path [14]: Assign an equal number of {nonzeroes and rows} per
processor. This is done by doing a 2-D binary search (i.e., on the diagonal
line in Figure 2(c)) over row offsets and nonzero indices of matrix A.

While row split focuses primarily on ILP and TLP, nonzero split and merge
path focus on load-balancing as well. We consider nonzero split and merge path
to be explicit load-balancing methods, because they rearrange the distribution of
work such that each thread must perform T independent instructions; if T > 1,
then explicit load-balancing creates ILP where there was previously little or
none. Thus load-balance is closely linked with ILP, because if each thread is
guaranteed T > 1 units of independent work (ILP), then each thread is doing
the same amount of work (i.e., is load-balanced).



(a) Row split (b) Nonzero split (c) Merge path

Fig. 2. The three parallelizations for CSR SpMV and SpMM on matrix A. The orange
markers indicate segment start for each processor (P = 4).

We contend that nonzero split and merge path despite having different struc-
ture possess similar performance characteristics. The binary search being done
in 2-D (i.e. on the diagonal line in Figure 2(c)) as opposed to 1-D is equivalent
to making an implicit assumption that a write to C has the same cost as a
memory read from A and B. As Merrill and Garland point out, this solves the
pathological case of matrices that have infinitely many empty rows. However,
the merge path is more challenging to implement, so we decide to extend the
Baxter’s nonzero split concept [12] to SpMM under the moniker “merge-based
SpMM”.

4.1 Algorithm I: Row-splitting SpMM

Row split aims to assign each row to a different thread, warp, or CTA. Fig-
ure 3(a) shows the warp assignment version. The typical SpMV row split is
only the left-most column of matrix B with orange cells replaced by green cells.
This gives SpMV 1 independent instruction and uncoalesced, random accesses
into the vector. Although row-split is a well-known method for SpMV [24], we
encountered three important design decisions when extending it to SpMM:

1. Granularity: Should each row be assigned to a thread, warp, or CTA?
2. Memory access pattern: How should work be divided in fetching B? What

is the impact on ILP and TLP?
3. Shared memory: Can shared memory be used for performance gain?

1. Granularity. We assigned each row to a warp compared to the alternatives of
assigning a thread and a CTA per row. This leads to the simplest design out of the
three options, since it gives us coalesced memory accesses into B. For matrices
with few nonzeroes per row, the thread-per-matrix-row work assignment may be
more efficient. This is borne out by Figure 4.



2. Memory access pattern. This design decision had the greatest impact on per-
formance. To our knowledge, this is the first time in literature this novel memory
access strategy has been described. Our thread layout is shown in Figure 3(c).
For SpMM, we have two approaches we could take: each thread is responsible
for loading a column or a row of the matrix B.

We discovered the first approach is better, because the memory accesses into
B are independent and can be done in a coalesced manner (provided that B is
in row-major order). In contrast, memory accesses into a column-major B would
be independent but uncoalesced. Compared to the SpMV case, each thread now
has 32 independent instructions and coalesced memory accesses into B, which
significantly amortizes the cost of memory accesses compared to accessing a
single vector. However, since we are forcing threads to pass a dummy column
index if they are out of bounds within a row, the effective number of independent
instructions and coalesced memory accesses is sensitive to row lengths that do
not divide 32. For example, if the row length is 33, then we will be doing 64
independent instructions and coalesced memory accesses into B. Whether or not
they divide 32 does not matter for very long rows, because the cost is amortized
by efficiently processing batches of 32. However, we would expect row split to
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Fig. 3. Figure 3(a) shows the tiling scheme we use. Figures (b), (c), (d) represent the
yellow blocks from Figure 3(a). Row split SpMM ILP (orange) and TLP (green) are
shown using warp 1 with 8 threads per warp. In practice, we use 32 threads per warp
and 4 warps per GPU cooperative thread array (CTA). Matrix A is sparse in CSR
format. Matrices B and C are both dense in row-major format.



be negatively impacted by Type 2 load imbalances. The summary of this ILP
analysis is shown in Table 1.

Table 1. This table shows the number of independent instructions per GPU thread for
SpMV and SpMM with default value shown in brackets, as well as the register usage
and the extra number of memory accesses with respect to the row-split algorithm. T
is the number of work items per thread (typically specified as a tuning parameter to
the algorithm). L is the number of nonzeroes modulus 32 in the row of A that we
are computing. B is the CTA size. Typical values for T in SpMV and SpMM are 7
and 1 respectively, while a typical value for B is 128. T cannot be set arbitrarily high,
because high register usage causes lower occupancy. A.nnz is the number of nonzeroes
in the sparse matrix A. B.ncols is the number of columns of the dense matrix B.

SpMV SpMM

Operation Row-split Merge-based Row-split Merge-based

Read A.col ind and A.val 1 T (7) 1 T (1)
Read x / Read B 1 T (7) 0 < L ≤ 32 32T (32)
Write y / Write C 1 T (7) 1 32T (32)
Register usage 2 2T (14) 64 64T (64)
Memory access overhead 0 A.nnz

B×T
0 B.ncols×A.nnz

B×T

(A.nnz
896

) (2A.nnz )

3. Shared memory. The key component required is a round of 32 broadcasts (us-
ing the “shuffle” warp intrinsic shfl) by each thread to inform all other threads
in the warp which B row ought to be collectively loaded by the entire warp. This
is required or otherwise each thread would be responsible for loading its own row,
which would result in uncoalesced access. We could have also implemented this
using shared memory, but since all threads are within a single warp, there is no
disadvantage to preferring warp intrinsics. That they are within a single warp is
a consequence of our decision to assign each row to a warp rather than a CTA.

4.2 Algorithm II: Merge-based SpMM

The essence of merge-based algorithms is to explicitly and evenly distribute the
nonzeroes across parallel processors. It does so by doing a two-phase decomposi-
tion: In the first phase (PartitionSpmm), it divides the work between threads
so that T work is assigned per thread, and based on this assignment deduces
the starting indices of each CTA. Once coordinated thusly, work is done in the
second phase. In theory, this approach should eliminate both Type 1 and Type
2 load imbalances, and performs well in recent SpMV implementations [14]. We
made the following design decisions when generalizing this technique to SpMM:

1. Memory access pattern. For fetching B, we adapt the memory access pat-
tern that was successful in row-splitting. However, here, we must first apply the
first phase (i.e., PartitionSpmm, Line 2 of Algorithm 1) to tell us the rows



each CTA ought to look at if we want an equal number of nonzeroes per CTA.
Then, we can apply the broadcast technique to retrieve B values using coalesced
accesses.

Algorithm 1 The merge-based SpMM algorithm.

Input: Sparse matrix in CSR A ∈ Rm×k and dense matrix B ∈ Rk×n.
Output: C ∈ Rm×n such that C← AB.
1: procedure SpmmMerge(A,B)
2: limits[] ← PartitionSpmm(A, blockDim.x) . Phase 1: Divide work and run

binary-search
3: for each CTA i in parallel do . Phase 2: Do computation
4: num rows ← limits[i + 1] − limits[i]
5: shared.csr ← GlobalToShared(A.row ptr + limits[i], num rows) . Read

A and store to shared memory
6: end ← min(blockDim.x, A.nnz - blockIdx.x × blockDim.x)
7: if row ind < end then
8: col ind ← A.col ind[row ind] . Read A if matrix not finished
9: valA ← A.values[row ind]

10: else
11: col ind ← 0 . Otherwise do nothing
12: valA ← 0
13: end if
14: for each thread j in parallel do
15: for j = 0, 1, . . . , 31 do . Unroll this loop
16: new ind[j] ← Broadcast(col ind, j) . Each thread broadcasts
17: new val[j] ← Broadcast(valA, j) . col ind and valA
18: valB[j] ← B[col ind][j] × new val[j] . Read B
19: end for
20: end for
21: terms ← PrepareSpmm(shared.csr) . Flatten CSR-to-COO
22: carryout[i] ← ReduceToGlobalSpmm(C, valB, valB) . Compute partial

of C and save carry-outs
23: end for
24: FixCarryout(C, limits, carryout) . Carry-out fix-up (rows spanning across

blocks)
25: return C
26: end procedure

2. Register usage. Since we opted for the coalesced memory access pattern ex-
plained in the row-splitting section, we require 32× the number of registers in
order to store the values. Due to this limitation, the number of independent in-
structions per thread T is limited to 1, so we see no further latency-hiding gain
from ILP over that of row-split.

3. Memory access overhead. There are two sources of memory access overhead
compared to the row-splitting algorithm: (1) the additional GPU kernel that
determines the starting rows for each block (Line 2), and (2) the write of the



carry-out to global memory for matrix rows of C that cross CTA boundaries
(Line 24). Since the user is unable to synchronize CTAs in CUDA, this is the
only way the user can pass information from one CTA to another. The first
source of additional memory accesses is less of a problem for SpMM compared
to SpMV, because they are amortized by the increased work. The second source,
however, scales with the number of B columns. Thus we face a trade-off between
having more efficient memory access pattern (assign 32 columns per CTA so
memory access is coalesced), and having less memory access overhead (assign 4
columns per CTA so T can be set higher resulting in fewer CTA boundaries that
need to be crossed). The first approach resulted in better performance.

5 Experimental Results

5.1 Experimental Setup

We ran all experiments in this paper on a Linux workstation with 2× 3.50 GHz
Intel 4-core E5-2637 v2 Xeon CPUs, 256 GB of main memory, and an NVIDIA
K40c GPU with 12 GB on-board memory. The GPU programs were compiled
with NVIDIA’s nvcc compiler (version 8.0.44). The C code was compiled using
gcc 4.9.3. All results ignore transfer time (from disk-to-memory and CPU-to-
GPU). The merge path operation is from the Modern GPU library [12]. The
version of cuSPARSE used was 8.0. The code generated during the current study
are available in the figshare repository and GitHub repository [25].

The 157 datasets mentioned in the previous section represent a random sam-
ple from the SuiteSparse sparse matrix collection. The topology of the datasets
varies from small-degree large-diameter (road network) to scale-free. In the
microbenchmark Figure 1(a), dense matrices (varying from 2 rows with 8.3M
nonzeroes per row to 8.3M rows with 2 nonzeroes per row) used in the micro-
benchmark are generated to be nonzero, and converted to CSR sparse matrix
storage. We then multiply the matrix by a dense vector and a dense matrix
with 64 columns using the vendor-supplied SpMV and SpMM implementations
respectively.

5.2 Algorithm I: Row-split

Figure 5(a) shows the performance of our row split implementation on 10 SuiteS-
parse datasets with long matrix rows (62.5 nonzeroes per row on average). We
obtain a geomean speed-up of 30.8% over the next fastest implementation and
39% peak improvement.

We suspect our performance drop to the left in Figure 4 comes from the
sensitivity to parameter L on row lengths that are significantly less than 32.
This causes divergence and uncoalesced memory accesses. On the right hand
side, we do much better than cuSPARSE. We believe this is due to the additional

3 https://doi.org/10.6084/m9.figshare.6378764
3 https://github.com/owensgroup/merge-spmm
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Fig. 4. The performance of our proposed SpMM row split kernel vs. NVIDIA
cuSPARSE’s SpMM as a function of aspect ratio on a Tesla K40c.

occupancy that we can get from superior ILP, which is better at hiding latency.
Using the profiler, we noted a 102% improvement in executed instructions per
cycle for the matrix sized 128-by-131072.

We also tried loading in the transpose configuration, where each thread per-
forms a texture load, and loads a different row of the dense matrix. Then, the
threads could perform a shuffle reduce, which is a common pattern in GPU pro-
gramming. However, we observed that this resulted in poorer performance than
the vendor-supplied library on average. We suspect the reason for this is there
was too much contention amongst different threads for the very limited texture
cache resource.

We tried variants that generate the output in column-major order, because
this is what cuSPARSE csrmm and csrmm2 produces as output. However, we
found that doing such a transpose in the write to global memory causes at
most a loss of 3-4 GFlops in performance. The results track Figure 5(a) very
closely. Another reason for our performance improvement comes from our use
of the shuffle broadcast technique, where we have all 32 threads take turns in
broadcasting their values to other threads. This saved shared memory (both in
capacity and throughput) which could be put to use elsewhere.

5.3 Algorithm II: Merge-based

Figure 5(b) shows the performance of our merge-based SpMM kernel on 10
SuiteSparse datasets with short matrix rows (7.92 nonzeroes on average). We
obtain a geomean speed-up of 53% over cuSPARSE csrmm2 and 237% peak im-
provement. We think the biggest reason that merge path is doing better than the
other methods is because it handles Type 2 load imbalances much better. Other
methods inevitably encounter warp efficiency degradation due to the divergence
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caused by short rows, as shown in Figure 1(b). However, merge path can handle
these short rows very well by simply allocating more rows to a CTA if the rows
are short.

Another interesting observation to make is that the merge path performance
in Figure 5(b) all tend to be lower than their row split equivalents. This means
that merge path has more overhead than row split, so it is only worth it to
perfectly load-balance matrices when it is profitable to do so (Section 5.4). While
Merrill and Garland found their merge-based solution was better than row split
on SpMV [14], ours did not perform as well on SpMM, as explained in the next
paragraph.

As Table 1 shows, merge path’s advantage in SpMV comes from being able
to obtain T times more ILP per thread than row split, but it enjoys no such
advantage in SpMM, where row splitting gets as much ILP as there are nonzeroes
in the sparse matrix row as long as row split can afford to pay the register cost.
This can be seen in Figure 3(a). While merge path has the opportunity to obtain
T times more ILP, we discovered that we need to keep T = 1 in order to keep
the register count manageable. In typical merge path SpMV implementations,
T can be as high as 7. The ILP advantage merge-based had in SpMV is not so
assured.

5.4 Heuristic

By comparing the speed-up of row split and merge-based to the fastest vendor-
supplied SpMM on 157 SuiteSparse sparse matrix collection datasets [15] (see
Figure 6(a)), we show that the two proposed algorithms achieve speed-ups over
the SpMM state-of-the-art in separate regions on the spectrum of matrix irregu-
larity. However, the geomean speed-up is only a 13.2% gain and 21.5% slowdown
for row split and merge-based respectively.



101 102 103

Mean row length

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

d-
up

Row-split
Merge-based

(a) Row split and merge-based sepa-
rately vs. cuSPARSE csrmm2.

101 102 103

Mean row length

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

d-
up

(b) Combined row split and merge-based
vs. cuSPARSE csrmm2.

Fig. 6. Performance comparison between proposed row split kernel, proposed merge-
based kernel, and cuSPARSE csrmm2 on 195 non-trivial datasets from the SuiteSparse
sparse matrix collection [15].

Therefore, we propose a heuristic for switching between them using an inex-
pensive O(1) calculation d = nnz

n . Our heuristic is simply computing the average
row length for the matrix, and using this value to decide whether to use merge-
based or row split. To pinpoint the transition point, we examine Figure 6(a). For
our heuristic, we decide that we will use merge-based on datasets whose mean
row length is less than 9.35, and row split otherwise.

Using this heuristic, we obtain an overall 31.7% geomean speed-up, and up
to a peak of 4.1×, over the vendor-supplied library cuSPARSE csrmm2. Over
cuSPARSE csrmm, we obtain a 2.69× geomean speed-up and 22.4× peak speed-
up. The result is shown in Figure 6. Using this heuristic as a binary classifier, we
get 99.3% accuracy vs. an oracle that perfectly chooses the fastest implementa-
tion.

6 Conclusion and Future Work

In this paper we implement two promising algorithms for computing sparse ma-
trix dense matrix multiplication on the GPU. Our results using SpMM show con-
siderable performance improvement over the vendor-supplied SpMM on a wide
spectrum of graphs. One of the keys to our high performance is our memory-
access strategy that allows coalesced access into all 3 matrices (see Figure 3(a)).

In Figure 7, we generate a 100, 000 × 100, 000 random matrix by making a
fixed percentage of elements in each row nonzero by sampling indices between 1
and 100,000 without replacement. Our experiments indicate that when multiply-
ing a sparse matrix randomly generated thusly with a tall-skinny dense matrix
of size 100, 000 × 64, our proposed merge-based SpMM is faster than a dense
matrix-dense matrix (GEMM) multiplication when less than 9% of the sparse
matrix is filled.

Greiner and Jacob have proven theoretically [26] that as the number of nonze-
roes per row exceeds some hardware threshold, namely m

M where m is the number
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Fig. 7. Runtime as a function of the percentage of nonzeroes in the sparse matrix on
Tesla K40c using single-precision floating-point. cuSPARSE csrmm, csrmm2 are sparse-
dense matrix multipilcation functions from a vendor-supplied library [20]. cuBLAS
sgemm is a dense-dense matrix multiplication function from a vendor-shipped library.

of rows in the sparse matrix and M is the size of the fast memory of the de-
vice, tiling will become more efficient than the access pattern described in this
paper (i.e. going across the sparse matrix and selecting nonzeroes in the dense
matrix). Indeed, they claim that tiling both the sparse matrix A and B in a
manner akin to tiling dense matrix-matrix multiplication is optimal. In future
work, it would be interesting to find out whether doing this tiling will extend
SpMM’s effectiveness range beyond 9% sparsity.

Our codes only use the popular CSR data structure, hence avoiding the
penalty of sparse matrix format conversions. There are legitimate reasons for
considering other formats. For example, certain iterative algorithms require mul-
tiplication of a sparse matrix (SpMM) as well as its transpose (SpMM T) within
the same code. Compressed Sparse Blocks (CSB) [27] is a format that is specif-
ically designed for this task and it has already been utilized for SpMM and
SpMM T [18] in CPUs. However, achieving high performance with CSB on ir-
regular matrices requires an efficient load balancer and it is not clear whether
GPUs are suitable for this task.

An interesting future direction for research is designing a library around load-
balancing techniques such as merge path. While merge path is already present
in two libraries–Modern GPU and CUB [12, 28]—they are not designed as lay-
ers separated from computation. Similarly in our code, computation and load-
balancing are very tightly knit. It would be interesting to discover how to ab-
stract out the load balancing from the computation. Ideally, the user would have
to identify the quantities that are desirable for load balancing separately from
the computation. Then the load-balancing library would handle the rest making
load-balanced GPU kernels much easier to write. The impact of our improved
SpMM kernels on application codes is also worth investigating in the future. In



particular, we expect a co-design approach to provide more pronounced perfor-
mance benefits to applications compared to drop-down kernel replacement.
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27. Buluç, A., Fineman, J.T., Frigo, M., Gilbert, J.R., Leiserson, C.E.: Parallel sparse
matrix-vector and matrix-transpose-vector multiplication using compressed sparse
blocks. In: Proceedings of SPAA. (2009)

28. Merrill, D.: CUB library. http://nvlabs.github.io/cub (2015)


