
Hybrid Parallelization
and Performance Optimization

of the FLEUR Code: New Possibilities
for All-electron Density Functional Theory

Uliana Alekseeva, Gregor Michalicek, Daniel Wortmann, and Stefan Blügel

Institute for Advanced Simulation and Peter Grünberg Institut,
Forschungszentrum Jülich and JARA, 52425 Jülich, Germany

{u.alekseeva,g.michalicek,d.wortmanm,s.bluegel}@fz-juelich.de
http://www.fz-juelich.de/pgi

Abstract. A hybrid MPI+OpenMP parallelization strategy has been
implemented into the density functional theory code FLEUR. Based on
the full-potential linearized augmented plane-wave (FLAPW) method,
FLEUR is a well-established all-electron code specialized on the sim-
ulation of materials properties of crystalline bulk solids and surfaces
with significant electronic and magnetic complexity. Developed in over 30
years the Fortran implementation included two layers of MPI-based dis-
tributed memory parallelization that serves as a reference for our work.
The revised code version shows superior performance, improved scala-
bility and thereby opens the path to exploit current and future high
performance computing architectures efficiently. Multiple threads per
MPI process can be utilized by interfacing with optimized linear alge-
bra subroutines from the BLAS and LAPACK libraries as well as in code
sections with explicit OpenMP statements. We demonstrate that the ad-
ditional multithreading helps to avoid the communication induced scala-
bility limit of the pure-MPI version and simultaneously boosts the single
node-performance on current multi-core systems. This enables FLEUR
calculations for unit cells with over 1000 atoms to simulate extended
defects, surfaces and disordered solids.

Keywords: DFT, FLAPW, Hybrid parallelization

1 Introduction

Over the last decades density functional theory (DFT) calculations [10] have
become an indispensable tool for the simulation of material properties and the
prediction of new materials showing novel functionality. The increasing compu-
tational resources together with algorithmic advances and methodological de-
velopments make the calculation of more and more properties for more and
more complex materials feasible. Due to the large variety of properties, physical
effects and the difference in the computational challenges that arise, many es-
tablished DFT-codes have been developed [4] that typically implement different
algorithms.

2 U. Alekseeva, G. Michalicek, D. Wortmann, S. Blügel

The increase in computational resources, however, also comes with a change
of the hardware architectures. Decades ago a typical mainframe computer fea-
tured a small number of computational cores and parallelism utilized few of these
single-core nodes with distributed memory. Nowadays HPC machines typically
are cluster systems consisting of many shared memory nodes connected through
a communication network and featuring several multi-core CPUs each. The ad-
ditional parallelization layers in such architectures together with the larger but
also shared memory capacity on each node entail the requirement to adapt the
software parallelization strategies.

We perform this adaption for the FLEUR [2] code developed at the Re-
search Center Jülich. This is a full-potential linearized augmented-plane-wave
(FLAPW) [5, 11, 19, 18] implementation of DFT. Being an all-electron code FLEUR
is employable to perform highly precise simulations for solids, surfaces and molec-
ular systems consisting of arbitrary compositions of chemical elements and it has
its particular strength in the simulation of magnetism and relativistic effects.

To utilize modern hierarchical architectures efficiently, a “hierarchical”, hy-
brid parallelization is implemented, i.e. the distributed memory paradigm (MPI)
and a multi-threaded shared memory paradigm are combined. The aim of the
new hybrid parallelization scheme presented here is not only to make the intra-
node CPU usage effective, but also to enable simulations of big unit cells using
many nodes. To achieve this, the “top-down” approach [17] was applied, i.e. for
a given test case, first the efficiency of MPI parallelization was investigated and
improved when needed, then multi-threading was added, either as calls to exter-
nal multi-threaded libraries or as direct implementation of OpenMP pragmas.
We show that we obtained significant performance and scalability enhancements
pushing the limit of applicability of the code to simulations with over 1000 atoms.

While we implemented many improvements throughout the code, we will
concentrate the discussion on the setup of the matrices and the subsequent
matrix diagonalization. The latter part can efficiently be solved using standard
libraries for dense generalized eigenvalue problems. The first of these two most
time consuming parts of the code other authors also discussed before in detail [16,
14]. While we agree with those works in the aspect of stressing the benefit of using
standard matrix operations, we use a significantly different algorithm exploiting
in addition the analytic properties of the problem and thereby reducing the
number of computations needed. We tested our approach against simpler schemes
and found it to show superior performance and scaling.

In the next chapter we introduce the FLAPW algorithm. In Chapter 3 we
discuss the parallelization and optimization performed to achieve the benchmark
results presented in Chapter 4, Chapter 5 concludes the paper.

2 Density Functional Theory and the FLAPW Method

According to density functional theory [9, 12], the total energy of a system of
interacting atoms and electrons is a functional of its electron density n(r). Hence,
the Hamiltonian (the energy operator) of the system

Hybrid Parallelization of FLEUR 3

Ĥ[n(r)] = T̂ + Veff[n(r)], (1)

which is the sum of the kinetic energy operator T̂ and the effective poten-
tial Veff, depends directly on the electron density. The electron density can be
expressed in terms of Nocc occupied single-particle orbitals ψν(r):

n(r) =

Nocc∑
ν

|ψν(r)|2 , (2)

where ν labels the states. The single-particle orbitals ψν(r) are the solutions
of the Kohn-Sham equations, an eigenvalue problem with eigenvalues εν :

Ĥ[n(r)]ψν(r) = ενψν(r) . (3)

Since the Hamiltonian in the equation depends on its solution, this is a self-
consistency problem which has to be solved iteratively: starting with an initial
guess the ground-state density is therefore obtained in an iterative scheme that
produces a new density in each iteration. The new input density is obtained by a
mixing procedure from the old input density, the output density, and optionally
further densities related to earlier iterations of this self-consistency cycle. The
final ground-state density is self-consistent with respect to this procedure.

We solve the Kohn-Sham equations for crystalline solids described by a unit
cell with a finite number of atoms, which is repeated indefinitely in all three
spatial dimensions to fill up the whole space. For such solids the Hamiltonian
matrix can be block-diagonalized and each block provides an independent eigen-
value problem. Each block is indexed by the so called Bloch vector k, hence in
the following the matrices, their eigenvalues and eigenvectors feature an extra
k-index [7].

2.1 FLAPW Method

A common approach to solving Eq. (3) is to expand the wave functions in terms
of a set of basis functions

{
φGk
}

as

ψν,k(r) =
∑
G

cGν,kφ
G
k (r) . (4)

By this the Hamiltonian becomes a Hermitian matrix and the eigenvalue problem
is solved by a matrix diagonalization. Equation (3) becomes the generalized
eigenvalue problem ∑

G′

Hk
G,G′cG

′

ν,k = εν,k
∑
G′

Sk
G,G′cG

′

ν,k , (5)

where

Hk
G,G′ =

∫
(φGk)∗ĤφG

′

k dr and Sk
G,G′ =

∫
(φGk)∗φG

′

k dr (6)

4 U. Alekseeva, G. Michalicek, D. Wortmann, S. Blügel

are the Hamiltonian matrix and the overlap matrix.
In the all-electron full-potential linearized augmented-plane-wave method

(FLAPW) [5, 11, 19, 18] the basis functions are linearized augmented-plane-waves
(LAPWs) which are based on a partitioning of space into non-overlapping but
nearly touching muffin-tin (MT) spheres centered at each atom and an intersti-
tial region (INT) in between the spheres. Formally a LAPW is given by

φGk (r) =

1√
Ω
ei(k+G)r in INT∑

α

lαmax∑
L

∑
p
ak,G,pL,α upl,α(rα)YL(r̂α) in MTα

, (7)

where G is a reciprocal lattice vector used to index the LAPW, Ω is the volume
of the unit cell, and rα = r − τα is the position vector relative to atom α at
τα. The MT part of the function is a linear combination of radial functions upl,α
times spherical harmonics YL, where p ∈ {0, 1} is an index to select one of the

radial functions. The coefficients ak,G,pL,α are determined by matching the MT
part of the LAPW in value and slope to the plane wave in the interstitial region.
The set of LAPW basis functions is defined by the reciprocal plane wave cutoff
parameter Kmax = |K|max = |k +G|max and its MT representation is bounded
by the angular momentum cutoffs lαmax for the sum over the composite index
L = (l,m). Typically one needs about 100 basis functions per atom and an lαmax

between 8 and 12 to obtain converged FLAPW results.
Besides the basis functions, the representations of the density and the po-

tential are FLAPW specific and their constructions are important parts of an
FLAPW program. However, the runtime of an FLAPW calculation is typically
strongly dominated by the setup and solving of the generalized eigenvalue prob-
lem. In the following we therefore focus on the computation of the Hamiltonian
and overlap matrices.

2.2 Hamiltonian and Overlap Matrices

After integrating (Eq. 6) over the LAPWs (Eq. 7), the Hamiltonian and overlap
matrices are given as sums over the MT contributions from each atom and the
INT contribution as

Hk
G,G′ = Hk,INT

G,G′ +
∑
α

Hk,MTα

G,G′ = Hk,INT
G,G′ +

∑
α

Hk,α,sph
G,G′ +Hk,α,nsph

G,G′ (8)

and
Sk
G,G′ = Sk,INT

G,G′ +
∑
α

Sk,α
G,G′ , (9)

where we also distinguish for each MT sphere between the spherical contributions
to the Hamiltonian matrix Hk,α,sph

G,G′ and those due to the non-spherical part of

the potential Hk,α,nsph
G,G′ .

Since an interstitial LAPW is a plane wave the calculation of the related
matrix contributions is fast. Its time requirements only scale quadratically with
the system size. We discuss the more challenging MT setup.

Hybrid Parallelization of FLEUR 5

The MT contributions to the Hamiltonian are given as

Hk,α
G,G′ =

∑
L,L′

∑
p,p′

(
ak,G,pL,α

)∗
tα,p,p

′

L,L′ a
k,G′,p′

L′,α (10)

in which tα,p,p
′

L,L′ denotes the local Hamiltonian matrix for the respective atom in
the basis of the radial functions times spherical harmonics. The calculation of
Hk,α

G,G′ is computationally expensive and in comparision to a simple implemen-
tation we use several measures to reduce these computational demands.

The first of these makes use of analytical calculations that can be performed
for the spherical contributions, by making use of the addition theorem for spher-
ical harmonics [6]. One obtains

Hk,α,sph
G,G′ =

∑
L

∑
σ

(
ak,G,σL,α

)∗∑
σ′

tα,σ,σ
′

L,L ak,G
′,σ′

L,α

=

lαmax∑
l=0

2l + 1

4π
Pl

(
KK ′

|KK ′|

)[∑
σ

(
ak,G,σl,α

)∗∑
σ′

tα,σ,σ
′

l,l ak,G
′,σ′

l,α

]
(11)

in which Pl denotes the Legendre polynomial of degree l. An analogous expres-
sion is obtained for the MT contributions to the overlap matrix Sk,α

G,G′ which
is computed as a byproduct. Note that the analytic m summation reduces the
computational demands for these matrix elements by a factor of about 10.

The remaining Hamiltonian matrix contributions due to the non-spherical
part of the potential are

Hk,α,nsph
G,G′ =

∑
L

∑
σ

(
ak,G,σL,α

)∗∑
L′ 6=L

∑
σ′

tα,σ,σ
′

L,L′ ak,G
′,σ′

L′,α

 . (12)

The last measure to reduce the required computational effort is based on
the realization that in comparison to Eq. (11), Eq. (12) has lower demands
with respect to the cutoff of the L sums. Therefore in practice one uses a new
cutoff lαnsph ≈ min(8, lαmax − 2) for the L and L′ sums in this equation. This
provides another reduction of the time requirements for these calculations by 30
to 50%. However, calculating the non-spherical contributions remains the most
time-consuming step in the setup of the matrices.

2.3 Scaling and Time Requirements

Of course, the computational demands of the different steps of an FLAPW calcu-
lation feature different scaling behaviors with respect to the system size defined
by the number of atoms Nat. Tab. 1 shows these different behaviors depending
on Nat but also more explicitely on the number of LAPW basis functions NG,
the angular momentum cutoff lαmax, the number of k-points Nk, and the number
of occupied eigenstates Nocc (see sum over ν in Eq. (2)).

6 U. Alekseeva, G. Michalicek, D. Wortmann, S. Blügel

Table 1: Scaling of the most time-consuming parts of an FLAPW self-consistency
iteration

Computational task Scaling vs. numerical parameters Scaling vs.
system size

Potential generation O
(∑

α

(lαmax + 1)2NG + NGlog(NG)

)
O
(
N2

at

)
Matrix setup O

(
Nk

∑
α

(lαmax + 1)2NG
2

)
O
(
N3

at

)
Diagonalization O

(
NkNG

3
)

O
(
N3

at

)
Charge density generation O

(
Nk

∑
α

(lαmax + 1)2NGNocc

)
O
(
N3

at

)

All of these parameters are system-dependent but only NG and Nocc are
proportional to the number of atoms, while lαmax is independent of Nat and Nk is
reciprocal to Nat in each direction but at least 1. Overall this implies a cubical
scaling of the time requirements with respect to the number of atoms.

Typical time requirements for the different steps in a single iteration of the
self-consistency loop are shown in Tab. 2. The run time dominance of the matrix
setup and the diagonalization step are clearly visible for all problem sizes. For
larger numbers of atoms this dominance becomes even more pronounced.

Table 2: Run time measurements of the FLEUR code (MaX Release 2.0) for three
test unit cells: NaCl (64 atoms), AuAg (108 atoms) and CuAg(256 atoms). All
simulations are performed on the CLAIX computing cluster with one k-point, for
one self-consistency iteration. The measurements are provided in seconds (left
side) as well as relative percentage values (right side).

Test system NaCl AuAg CuAg

Number of atoms 64 108 256

Potential generation 3.5 12.5 % 12.4 3.9 % 47.2 4.8 %
Matrix setup 8.1 29.0 % 127.7 40.4 % 455.2 46.3 %

Diagonalization 10.6 38.2 % 145.5 46.0 % 384.2 39.1 %
New charge density generation 2.9 10.4 % 22.5 7.1 % 78.6 8.0 %

Total time 27.8 100 % 316.3 100 % 982.4 100 %

3 Parallelization and Optimization

Since different parts of the code have different algorithms and scaling behaviour,
there is no single parallelization strategy which is applicable to the whole code.
Fig. 1(left) summarizes how the computational load is distributed for each sec-
tion of the code on every parallelization level. There are two layers of MPI paral-
lelization for the most time-consuming parts, matrix setup, the diagonalization

Hybrid Parallelization of FLEUR 7

and for the new charge density generation part. To make the code suitable for
modern HPC architectures with their hierarchical structure of parallelism, it has
been extended with multi-threading and SIMD parallelization schemes.

 Code Parts Level of Parallelization

MPI OpenMP SIMD

Potential - a lot of small subroutines
- parallelization of loops

- loops - compiler flags
- BLAS calls

 k – points Eigenvalue

Matrix Setup - independent
eigenvalue
problems for each
k-point

- block distribution
among the
processes

- BLAS calls
- compiler hints
- compiler flags

Diagonalization - interfaces to the external libraries:
 ELPA, ScaLAPACK, Elemental

New Charge - loop over reciprocal
 lattice vector G

- loop over
atoms

- compiler flags

 Version 0.26 Version 0.27 MaX Release 2.0

 0
 1
 2
 3
 4

 1 2 4 8 16

S
ca

le
d

tim
e

Number of MPI processes

DyTiO3 (20 atoms)

1 k-point per MPI process
2 k-point per MPI process
4 k-point per MPI process

Fig. 1: Left Side: The schematic summary of parallelization strategies used for
different parts of the code. Right Side: Week scaling over k-points for test unit
cell DyTiO3. The number of k-points is proportional to the number of MPI
processes. The red points show the run times for calculations with 1,2,4,6,8, and
12 k-points distributed over 1,2,4,6,8, and 12 MPI processes correspondingly.
The green and blue points show the run times for test cases with 2 and 4 k-
points per MPI process. Run time is scaled to the run time of the test case
with 1 k-point on 1 node (94 seconds for one self-consistency iteration). The
horizontal lines are theoretical predictions. Simulations are done on the RWTH
Bull Cluster, one MPI process per node.

3.1 MPI Parallelization

The MPI parallelization relies on two levels of parallelism. On the first level,
the different k-points for which the Kohn-Sham Eqs. (3) have to be solved are
distributed. As these are independent problems only the final results of the diag-
onalization has to be communicated and hence this parallelization is extremely
efficient with nearly ideal scaling. Fig. 1(right) demonstrates and confirms this
perfect weak scaling. While this level of parallelization is very efficient in terms
of distributing the computational load, it has two shortcomings. First, in large
systems the number of k-points to be considered is small and hence this par-
allelization is very limited. Second, as the diagonalization part of the code cor-
responds to peak memory usage, the k-point parallelization does not reduce
memory requirements per node.

The second level of MPI parallelization implements the distribution of the
matrices and hence additionally distributes the computation of the matrix setup,
the diagonalization and some critical parts of the charge generation routines. We
will discuss details of the distributed matrix setup of the new version in the next
section. The distributed memory parallelization was very performant at the time

8 U. Alekseeva, G. Michalicek, D. Wortmann, S. Blügel

of its implementation [8], it worked excellent for machines like the CRAY T3E
(512 CPUs).

The new code version (FLEUR version 0.27 MaX Release 2.0) reported in
this work extends the existing MPI parallelization into further code parts and
hence pushes the scalability limit as set by Amdahl’s law. The old optimization
(FLEUR version 0.26) for a small memory footprint also affected the quadrat-
ically scaling storage of the eigenvectors and the linearly scaling storage of the
potential and the density. To reduce the memory consumption these were se-
quentially written to Fortran direct access files on disc whenever they were not
needed and later read from disc again. However for large scale parallelization
this approach becomes a bottleneck that was overcome by additional alterna-
tive storage schemes for the eigenvectors. On the one hand it is now possible
to keep them entirely in working memory and communicate them by one-sided
MPI communication and on the other hand if memory consumption still is a
problem they can be stored on disc in terms of HDF5 files with parallel IO.
The potential and density are now always kept in memory and communicated
via MPI broadcasts. Overall the reduction of disc IO measurably increases the
parallelization scalability.

3.2 Hybrid Parallelization and Optimized Matrix Setup

One of the main optimization targets was the matrix setup. In the old ver-
sion, it was heavily optimized to reduce memory footprint. For example, several
matrix-matrix multiplications were unrolled to enable the calculation of matrix
elements on the fly without storing the whole matrix. In all of the matrix setup
routines the second level of MPI parallelization utilizes a cyclic row distribu-
tion [1] of the matrices. This ensures good load-balancing and effective re-use
of calculated quantities. The interstitial contribution can be easily calculated,
does not take much time and allows for a straightforward MPI and an additional
OpenMP parallelization over the matrix rows. It scales almost perfectly due to
the independence of the computations and the absence of communication.

As discussed above, the matrix setup in the MT spheres is the most com-
putationally relevant part of the matrix setup. In the old (version 0.26) im-
plementation of FLEUR, spherical contributions to the H and S matrices and
non-spherical contribution to the H matrix were calculated in a single subroutine
which contained more than 1500 lines of code. This coarse-grained modularity
of the code is beneficial if the heavy reduction of the memory footprint is as-
pired. Nowadays modularity in routines in which the main computational effort
is performed by the lowest kernels is more advantageous. It is less error-prone
and improves readability and maintainability of the code. Besides that, in case
these low kernels perform some common mathematical operation such as linear
algebra operations or Fourier transforms, external libraries can be used which
are usually highly optimized for a given hardware. Hence, the first step was to
increase the modularity of the code. The huge initial subroutine was split to
several smaller ones.

Hybrid Parallelization of FLEUR 9

The most important code split reflected the separation of the spherical and
non-spherical contributions. In the routines for the spherical MT contribution
the parallelization over the basis vectors on the MPI-level shows close to ideal
scaling. To further distribute the computations in this code section, a layer of
OpenMP parallelization over the atoms of the system has been added.

The non-spherical contributions to the Hamiltonian are now calculated by

first explicitly constructing the matrices Ak
α = [ak,G,σL,α] and Tα = [tα,σ,σ

′

L,L′] such
that the sums over L,L′, σ, σ′ can now be performed as matrix multiplications.
Hence the algorithm in this part basically consists of the construction of the
A-matrices, a first matrix-matrix multiplication

Ck
α = Tα ∗Ak

α (13)

and a second multiplication

Hk,nsph
α =

(
Ak
α

)H ∗ Ck
α . (14)

These two different matrix computations scale significantly different with sys-
tem size. The first is an O

(
(lαmax + 1)4NG

)
operation, the second scales as

O
(
(lαmax + 1)2NG

2
)

and hence is most relevant for large systems. As the first of
these matrix multiplications has to be performed on all MPI-ranks, it is simply
mapped onto a standard matrix-matrix multiplication that enables us to exploit
highly optimized BLAS-3 libraries for this operation.

For the second matrix multiplication, the MPI-distribution over rows and
the property of the Hamiltonian should be considered. The algorithm we im-
plemented here is a trade-off of the two contradictory conditions. On the one
hand, it is determined by the fact that the final matrix is Hermitian and only
one half of it has to be calculated and stored. On the other hand, we wish to
use again optimized, vendor supplied BLAS3 (matrix-matrix multiply) routines
to increase the efficiency. Hk,nsph

α is distributed between MPI processes in cyclic
row distribution: if there are M processes, the line i of the matrix can be found
on the process with the number mod(i,M). That means, each MPI process pos-
sess data from a rectangular matrix with size (NG/M) × NG. Note that line i
only has i elements. The matrix is stored as a packed storage vector. To be able
to use BLAS3 routines, the matrix Hk,nsph

α is divided into blocks (Fig. 2). Each
block is calculated as matrix-matrix multiplication, then the values from the
block are copied to the packed storage vector. Here we had to find a trade-off
between a small block-size that exploits the fact that the final result is Hermi-
tian most effectively, and a larger block-size that leads to better performance of
the matrix-matrix multiplication. We found a value of about 64-128 most suit-
able on the machines we considered. As a final point we should stress, that our
scheme has the important advantage that all operations performed in the ma-
trix setup are local for each MPI-process. No communication is required as the
MPI-distributed matrix elements are obtained independently for each process.

Besides the matrix-setup the second time consuming part is the diagonal-
ization of the matrices. Here we rely on standard libraries. The old code imple-

10 U. Alekseeva, G. Michalicek, D. Wortmann, S. Blügel

Fig. 2: Example of parallel data layout distributed between 3 MPI processes (red,
yellow and green). Matrix H is distributed among MPI processes in line-wise
fashion, so that each MPI process has data from a rectangular matrix with size
(NG/M)×NG. To be able to use BLAS3 routines, the matrix Hk,nsph

α is divided
into blocks (pink). Each block is calculated as matrix-matrix multiplication, then
the values from the block are copied to the packed storage vector.

mented an interface to the ScaLAPACK [1] for this purpose. To obtain reason-
able performance this requires a redistribution of the matrix from the simple
row cyclic scheme used in the matrix setup to a two-dimensional block-cyclic
scheme. While this imposes a communication overhead in theory, such a redis-
tribution turns out to be fast enough that it does not impose a relevant restric-
tion in practice. We furthermore implemented additional interfaces to external
hybrid-parallel libraries (ELPA [13], Elemental [15]). It turns out that the ELPA
library outperforms ScaLAPACK significantly and also has the additional ben-
efit of delivering much more consistent performance for different levels of MPI
and OpenMP parallelism resulting in different processor grids.

With substantial parallelization, also other parts of the code start to play
substantial roles: for example, the potential generation could not be left sequen-
tial any more. In the other parts of the code either the usage of multi-threaded
libraries or the explicit implementation of OpenMP pragmas provided the needed
scaling on top of the existing MPI parallelization.

4 Benchmarks

We demonstrate the performance and scalability of the code by showing some
exemplary cases. As we have already shown that the additional k-point paral-
lelization leads to ideal scaling behaviour we restrict the presentation to calcula-
tions using a single k-point, in realistic simulations one would have an additional
parallelization allowing to use a factor 3 − 20 (depending on system size) more
computational cores effectively. In addition we only consider a single iteration.
As the code usually has to perform approximately 20-50 iterations sequentially,
the total runtime would increase accordingly.

Hybrid Parallelization of FLEUR 11

4.1 Computational Environment

We have parallelized and optimized the FLEUR code for typical architectures
found in HPC today: compute clusters with several levels of parallelism: inter-
node with distributed memory, intra-node with shared memory and SIMD inside
the core. The concrete specifications of the compute clusters used for the per-
formance evaluations in this work are given in Tab. 3.

Table 3: Hardware systems used to perform the benchmark calculations.
CPU cores per node memory mem.

node performance bandwidth

RWTH Bull Cluster Intel X5675 12 147 GFlops 24 GB 40 GB/s
CLAIX Intel E5-2650v4 24 840 GFlops 128 GB 120 GB/s

4.2 Efficient Usage of a Single Node

To investigate the behaviour of FLEUR on a single node we use a small test case:
NaCl with 64 atoms. The intranode scaling of the whole code and its main parts
are shown in Fig. 3. Only parts of the code whose running time is more than 1%
of the total time are considered. We see that the most time-consuming parts are
the matrix setup and the diagonalization. The potential generation and the new
charge generation do not contribute much to the run time on one core, but as
we try to distribute the workload among all cores on this node, their negative
influence on the overall efficiency becomes more important.

Most significant in these plots is the limited scalability of the matrix setup
in the old, MPI only version. Here we can see that the MPI parallelization
shows scalability limits as soon as the workload per MPI process becomes too
small. This is not a communication based bottleneck as the matrix setup is
local, but a limitation induced by the underlying algorithm with its complex loop
structure being heavy on memory access tasks. The new version shows significant
improvements not only on the scaling but also on the sequential run-time. This
leads to a difference in wall-clock time for the utilization of a full node between
the old version requiring 198 seconds versus 97 seconds for the new version. Tests
on Intel Knights Landing processors (Xeon Phi 7210) showed comparable results
indicating performance portability of the new implementation.

4.3 Internode Hybrid Scaling

To investigate the full scaling of the hybrid code we studied two setups (Fig. 4): A
smaller system on the RWTH Bull Cluster and a larger system on the more mod-
ern CLAIX machine. Here we not only compared to the pure MPI parallelization
of the older code version but we also studied the effect of shifting resources be-
tween the MPI- and the multithreaded parallelization. In all cases we utilized

12 U. Alekseeva, G. Michalicek, D. Wortmann, S. Blügel

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12

S
pe

ed
up

 (
on

e
co

re
: 1

4
m

in
)

Number of cores

NaCl (64 atoms), FLEUR version 0.26

Ideal
Potential, 4.40%

Matrix setup, 46.30%
Diagonalization, 45.12%

New charge, 3.12%
Total

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12

S
pe

ed
up

(o
ne

 c
or

e:
 1

2
m

in
)

Number of cores

NaCl (64 atoms), FLEUR MaX Release 2.0

Ideal
Potential, 4.73%

Matrix setup, 29.09%
Diagonalization, 49.62%

New charge, 9.16%
Total

Fig. 3: Intranode scaling of the FLEUR code in total (red) as well as of its most
relevant parts (time requirements are given as percentage of the total runtime
for a single core (14min/12min)), before (MPI-only version 0.26, left side) and
after (hybrid version MaX Release 2.0, right side) optimization. For the opti-
mized version: up to 4 cores - only MPI processes, on 8 und 12 cores - hybrid
parallelization. The simulations were performed on the RWTH Bull Cluster.

all cores of the node, but with a different number of MPI ranks per node and a
resulting change in mutlithreading. Both systems on both machines show similar
behavior. While the pure MPI parallelization is still efficient for small numbers of
MPI-ranks, it becomes less favorable with increasing parallelization. Notably, in
an intermediate range of parallelization there is little difference between the two
approaches demonstrating that both implementations have a similar efficiency.

As a final test we also show (Fig. 5) that the new version of the code enables
the simulation of significantly larger setups utilizing stronger parallelization.
Here we stress that the hybrid approach also is required as a pure MPI par-
allelization over 24 ranks per node will fail for larger setups due to memory
constraints.

5 Conclusions

We demonstrated that the hybrid MPI+OpenMP parallelization of the large
legacy DFT code FLEUR enables the efficient use of modern computer archi-
tectures to perform simulations of large unit-cells. The two most performance
relevant parts, the matrix setup and the matrix diagonalization show improved
scaling and performance by implementing interfaces to optimized standard li-
braries and by implementing an additional layer of OpenMP parallelization on
top of the MPI parallelization. The possibility to shift computational resources
between these different parallelization approaches not only shows the effective-
ness of the hybrid scheme but also enables the adaptation to different hardware.

The new FLEUR version is able to treat setups with more than 1000 atoms.
While this limit imposes an important milestone in itself, this also paves the

Hybrid Parallelization of FLEUR 13

 128

 256

 512

 1024

 1 2 4 8 16

E
xe

cu
tio

n
tim

e,
 s

ec

Number of nodes, 12 cores each

AuAg (108 atoms), RWTH Bull Cluster

Version 0.26
Pure MPI

Hybrid, 2 threads
Hybrid, 6 threads

Ideal slope
 64

 128

 256

 512

 1024

 1 2 4 8 16 32

E
xe

cu
tio

n
tim

e,
 s

ec

Number of nodes, 24 cores each

CuAg (256 atoms), CLAIX

Version 0.26
Pure MPI

Hybrid,2 threads
Hybrid,6 threads

Ideal slope

Fig. 4: Internode scaling of the FLEUR code, before (MPI-only version 0.26) and
after (hybrid version MaX Release 2.0) optimization. For the hybrid version dif-
ferent hybrid setups are shown: pure MPI, i.e. 1 thread per MPI process (green),
2 threads per MPI process (blue) and 6 threads per MPI process (magenta).

32 64 128 256 512 1024 2048 4096
Number of cores (24 per node)

128

256

512

1024

2048

4096

Ex
ec

ut
io

n
tim

e
[s

]

32 64 128 256
 Nodes256 atoms, basis 24k, 2816 el. (CuAg)

512 atoms, basis 60K, 7168 el. (GaAs)
1078 atoms, basis 105K, 8628 el. (TiO2)

slope of ideal scaling

Fig. 5: Comparison of the scaling of the FLEUR code for three systems with
different number of atoms, basis functions and electrons. The smallest system is
the one discussed in Fig. 4, the largest system contains more than 1000 atoms.
Due to the higher computational demand, the scaling for the larger systems
extends to more nodes. (MaX Release 2.0, CLAIX compute cluster)

way for the investigation of effects in heterogeneous multilayer structures, re-
constructed surfaces, adsorbates on surfaces, defects and extended defects in
solids, complex magnetic superstructures or simply large bulk superstructures.

6 Acknowledgments

This work has been supported by a JARA-HPC seed-fund project and by the
MaX Center of Excellence [3] funded by the EU through the H2020-EINFRA-

14 U. Alekseeva, G. Michalicek, D. Wortmann, S. Blügel

2015-1 project: GA 676598. The authors gratefully acknowledge the computing
time granted by the JARA-HPC Vergabegremium on the RWTH supercomputer.

References

1. ScaLAPACK users’ guide (1997), http://www.netlib.org/scalapack/slug
2. The Jülich FLEUR project (2018), http://www.flapw.de
3. MaX Centre of Excellence - MATERIALS DESIGN AT THE EXASCALE (2018),

http://www.max-centre.eu
4. Psi-k: software codes (2018), http://psi-k.net/software
5. Andersen, O.K.: Linear methods in band theory. Phys. Rev. B 12, 3060–3083

(1975)
6. Arfken, G.: The Addition Theorem for Spherical Harmonics, pp. 693–695. Aca-

demic Press, Orlando (1985)
7. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Holt, Rinehart and Winston,

New-York (1976)
8. Blügel, S., Bihlmayer, G.: Full-potential linearized augmented planewave metho. In:

J. Grotendorst, S. Blug̈el, D.M. (ed.) Computational Nanoscience: Do It Yourself!
NIC Series. vol. 31, pp. 85–129. John von Neumann Institute for Computing, Jülich
(2006)

9. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–
B871 (1964)

10. Jones, R.O.: Density functional theory: Its origins, rise to prominence, and future.
Rev. of Mod. Phys. 8, 897–923 (2015)

11. Koelling, D.D., Arbman, G.O.: Use of energy derivative of the radial solution in
an augmented plane wave method: application to copper. J. Phys. F: Metal Phys.
5, 2041–2054 (1975)

12. Kohn, W., Sham, L.: Self-consistent equations including exchange and correlation
effects. Phys. Rev. 140, A1133–1138 (1965)

13. Marek, A., et al.: The elpa library: scalable parallel eigenvalue solutions for elec-
tronic structure theory and computational science. J. of Phys.: Condensed Matter
26, 213201 (2014)

14. Napoli, E.D., et al.: High-performance generation of the hamiltonian and overlap
matrices in flapw methods. Comput. Phys. Commun. 211, 61–72 (2017)

15. Poulson, J., et al.: Elemental: A new framework for distributed memory dense
matrix computations. ACM Trans. Math. Soft. 39, 1–24 (2013)

16. Solca, R., et al.: Efficient implementation of quantum materials simulations on
distributed cpu-gpu systems. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. pp. 1–12. Texas
(2015)

17. Supalov, A., Semin, A., Klemm, M., Dahnken, C.: Optimizing HPC Applications
with Intel Cluster Tools. Apress Media (2014)

18. Weinert, M., Wimmer, E., Freeman, A.: Total-energy all-electron density functional
method for bulk solids and surfaces. Phys. Rev. B 26, 4571–4578 (1982)

19. Wimmer, E., Krakauer, H., Weinert, M., Freeman, A.J.: Full-potential self-con-
sistent linearized-augmented-plane-wave method for calculating the electronic-
structure of molecules and surfaces - o2 molecule. Physical Review B 24, 864–875
(1981)

