
Diagnosing Highly-Parallel OpenMP Programs
With Aggregated Grain Graphs

Nico Reissmann and Ananya Muddukrishna

Norwegian University of Science and Technology
firstname.lastname@ntnu.no

Abstract. Grain graphs simplify OpenMP performance analysis by vi-
sualizing performance problems from a fork-join perspective that is fa-
miliar to programmers. However, when programmers decide to expose
a high amount of parallelism by creating thousands of task and paral-
lel for-loop chunk instances, the resulting grain graph becomes large and
tedious to understand. We present an aggregation method that hierarchi-
cally groups related nodes together to reduce grain graphs of any size to
one single node. This aggregated graph is then navigated by progressively
uncovering groups and following visual clues that guide programmers
towards problems while hiding non-problematic regions. Our approach
enhances productivity by enabling programmers to understand problems
in highly-parallel OpenMP programs with less effort than before.

1 Introduction

The grain graph [1] is a recent visualization method that simplifies OpenMP
performance analysis by highlighting problems from a fork-join perspective. Task
and parallel for-loop chunk instances are collectively termed grains in the grain
graph method. Grains that suffer performance problems such as work inflation,
inadequate parallelism, and low parallelization benefit are pinpointed on the
grain graph along with precise links to the problematic source code. This enables
programmers to perform optimizations productively without relying on experts
or trial-and-error tuning.

Programmers optimize OpenMP programs for large machines with hundreds
of cores by exposing a high amount of parallelism during execution. This is
achieved by adjusting special program inputs called cutoffs and chunk sizes such
that a large number of fine-grained tasks and for-loop chunks are created. Scala-
bility problems invariably occur when the runtime system is unable to efficiently
handle the parallelism exposed [2–4]. These problems are pinpointed on the grain
graph using metrics that isolate low parallelization benefit, work inflation, and
poor memory hierarchy utilization to specific grains.

However, the large grain graphs resulting from highly-parallel OpenMP exe-
cution make problem diagnosis tedious (Fig. 1). Programmers have to zoom and
pan to different sections while remembering characteristics of visited sections.
Problems that are spread out become difficult to locate. Non-problematic grains
that are shown dimmed to increase focus on problems combine at lower zoom

levels and become pronounced. Programmers can perceive the dimming effect
and spot problematic grains only when zoomed into higher levels. A powerful
workstation with a large screen and copious amount of memory is required to
render large grain graphs responsively. In light of these demands, programmers
prefer to pore over text summaries and tabular formats of large graphs and
reserve the visual approach only for small graphs.

Fig. 1. The grain graph of the task-recursive Sort program from the Barcelona
OpenMP Task Suite (BOTS) for a high-parallelism input (n=20971520,
cutoffs={65536,8192,128}) is dense with 11059 grains. Inset (blue box) zooms
into a section at magnification 40X.

This paper contributes with a new aggregation method that makes visual
analysis of large grain graphs practical. The aggregation method (Section 3)
groups related nodes by matching recurrent patterns in the grain graph, ul-
timately resulting in an aggregated graph with a single group node. Program-
mers navigate the aggregated graph by progressively opening and closing groups.
Groups with problems are highlighted and non-problematic sections are removed
from sight for distraction-free diagnosis. Navigation is further sped up through
new group-based metrics that enable programmers to traverse the critical path
and compare groups for structural similarity. Using highly-parallel executions of
standard OpenMP programs, we demonstrate (Sections 3 and 4) that aggregated
grain graphs enhance the the state-of-the-art in OpenMP problem diagnosis.

2 Background on Grain Graphs

The grain graph [1] is a visualization for OpenMP that connects performance
problems to the fork-join program structure at the resolution of grains – task
and parallel for-loop chunk instances created during execution. This simplifies
problem diagnosis as programmers can readily identify with the fork-join pro-
gram structure. In contrast, existing visualizations based on timeliness and call
graphs complicate diagnosis by connecting performance problems to scheduling
events that are unfamiliar and unpredictable to programmers [1, 5]. Experts who
understand scheduling internals nevertheless find it tiring to follow timelines and
call graphs that depict recursive task-based execution – a popular style of using
OpenMP.

2.1 Structure

The grain graph is a directed acyclic graph whose nodes denote grains and run-
time system operations, and edges denote control-flow. Parent and child grains
are shown in close proximity on the graph using logical-time placement [6, 5] to
maintain familiarity with the fork-join perspective (Fig. 2a1). The grain graph is
laid out using the Sugiyama layout [7, 8]. This layout places nodes in layers, re-
moves cycles, and prevents edge crossings. These features are essential to depict
fork-join progression in an uncluttered manner.

1 bool is_graingroup(Node n) {

2 return is_grain(n) || is_forkjoin(n) || is_linear(n)

3 }

4
5 void reduce(Node n) {

6 if (is_graingroup(n) && is_graingroup(succ(n))) {

7 n′ ← reduce_linear(n)

8 reduce(n′)

9 } else if (is_graingroup(n) && is_fork(succ(n))) {

10 reduce(succ(n))

11 n′ ← reduce_linear(n)

12 reduce(n′)

13 } else if (is_fork(n)) {

14 forall s in succ(n)

15 reduce(s)

16 n′ ← reduce_forkjoin(n)

17 reduce(n′)

18 }

19 }

(a) (b)

(c) (d) (e) (f) (g) (h)

(i)
Fig. 2. Grain graph of the task-based Sort program from BOTS for small input (n=512,
cutoffs={256,64,16}). (a) Structural view (b) Problem view highlighting low parallel
benefit in red (c) After two fork-join pattern reductions of the highlighted subgraph
(d-g) Linear pattern reductions leading to a single group node (h) After normalization
(i) Reduction pseudocode

2.2 Diagnosing problems

Grains are annotated with unique schedule-independent identifiers, links to source
code locations, as well as performance metrics measured during profiling and de-
rived post profiling. Profiled metrics include execution time, cache miss ratio,
memory latency, and timestamps of control-flow events such as grain creation
and synchronization. These metrics are used to compute derived metrics such
as critical path, work deviation, instantaneous parallelism, memory hierarchy
utilization, scatter, load balance, and parallel benefit.

Parallel benefit is a custom metric used in several discussions of this paper.
It is computed by dividing a grain’s execution time by its parallelization cost

1 Readers should print in color as they are crucial to appreciate grains graphs.

including creation time. This metric aids inlining and cutoff decisions as grains
with low parallel benefit should be executed sequentially to reduce overhead.

Commonly sought out metrics are encoded visually for quick identification
on the graph (Fig. 2a). The length of a grain is set proportional to its execution
time. Grain colors denote source code locations by default. Edges are colored by
type and highlighted red if they are on the critical path.

Grains with metric values that cross programmer-defined thresholds are in-
ferred as problematic. The thresholds have sensible values by default. Prob-
lematic grains are highlighted with a color that encodes problem severity in a
separate view while non-problematic grains are dimmed (Fig. 2b). Additionally,
problems are summarized in a separate text file and highlighted in a tabular
form of the grain graph shown on a separate visualization widget.

Grain graphs have multiple conceptual views with colors encoding a single
problem or property per view. Programmers shift between these views to un-
derstand properties or tackle problems. Problematic grains are highlighted and
non-problematic grains are dimmed, and clicking on a grain opens a separate
window that shows the grain’s properties and performance metrics. Fig. 2b-a
show the programmer cycling between the low parallel benefit problem view and
the structural view where no problems are highlighted.

3 Grain Graph Aggregation Method

Our aggregation method for grain graphs conceptually consists of four phases:

1. Reduction matches and replaces subgraph patterns with group nodes to
construct an aggregation tree. This tree captures the graph structure and
serves as a basis for further processing. After aggregation is complete, the
tree is converted back to an aggregated grain graph with problematic grains
exposed and non-problematic grains hidden.

2. Normalization transforms the aggregation tree into a canonical form, sim-
plifying further processing.

3. Propagation propagates grain metrics at the leaves of the tree to upper
levels in a sensible manner.

4. Separation transforms the aggregation tree to separate problematic nodes.
This enables grouping and hiding of non-problematic grains in the resulting
aggregated graph.

The algorithmic complexity of all four phases is linear in the number of
graph nodes plus edges. The rest of this section explains the phases in detail and
discusses the navigation of the resulting aggregated graph at the end.

3.1 Reduction

The reduction phase matches a fork-join and linear pattern, and replaces them
with group nodes to construct an aggregation tree. The fork-join pattern consists

of a single fork node connected to child grains or groups, which in turn are
connected to a join node (Fig. 2c). The linear pattern has two nodes, either a
grain or a group node, that are connected to each other (Fig. 2d). Both patterns
are repeatedly matched, and replaced by a single group node until the entire
grain graph is reduced to a single node (Fig. 2d-g).

The pseudocode of the reduction algorithm is shown in (Fig. 2i). The key
steps in the psuedocode are explained next:

– Line 6 matches the linear pattern (Fig. 2d-g). It uses the helper function
is graingroup to detect whether a node and its successor is a grain or a
group, and reduces the pattern to a linear group node. Reduction continues
with the newly-created group node.

– Line 9 matches a grain or group node with a fork node as successor. The
matched fork node is recursively aggregated to a fork-join group node (Fig. 2c).
The resulting linear pattern is then reduced to a linear group node. Reduc-
tion continues with the linear group node.

– Line 13 matches a fork node (Fig. 2a) and recursively aggregates all succes-
sors of the fork node. The resulting fork-join pattern is then reduced to a
fork-join group node. Reduction continues with the fork-join group node.

The grain graph is reduced greedily by the reduction algorithm. It always
continues with the newly-created group node after a pattern match and never
traverses past a join node. This ensures that the innermost fork-join in a nesting
is reduced first.

The aggregation tree consisting of group and grain nodes explicitly captures
the grain graph’s nesting and fork-join structure. The leaves of the tree are
grains and its intermediate nodes are the newly-created group nodes. Linear
group nodes have the two matched nodes from the pattern as children, whereas
fork-join group nodes have the children of the matched fork node as children.

The reduction algorithm is applicable to grain graphs where parents synchro-
nize with all their children before completion. This essential property ensures
that fork-join patterns are properly nested, permitting their reduction in a hier-
archy of group nodes. While this property holds for well-behaved OpenMP 3.X
programs, the taskgroup construct in OpenMP 4.0 violates this property. The
construct permits parents to synchronize with their children and descendants in
one step. This impedes reduction unless the grain graph is restructured so that
all descendants are placed as immediate children of the root parent.

3.2 Normalization

Normalization transforms the aggregation tree into a canonical form by flatten-
ing nested linear group nodes. In the reduction phase, linear group nodes are
always created for a pair of grain or group nodes, even if more nodes are chained
together. This constructs nested linear subtrees where linear group nodes are the
children of other linear group nodes as exemplified in Fig. 2d-g. Normalization
flattens these subtrees to a single linear group node with all non-linear group

nodes from the subtree as its children (Fig. 2h). In practice, this phase can be
incorporated into the previous phase to speedup aggregation.

3.3 Propagation

This phase propagates leaf node metrics to the enclosing groups all the way up
to the root node. It traverses the aggregation tree in post-order and attributes
group nodes with metrics sensibly-derived from their children. For example, the
work metric of a group node is the sum of the execution times of its children,
while the schedule-independent identifiers of children are concatenated with the
group node’s depth to derive a schedule-independent identifier.

Metrics are attributed such that problems propagate to the root group. If
a child is problematic, then its parent is marked as problematic as well. The
minimum of the memory hierarchy utilization, parallel benefit, and instantaneous
parallelism as well as the maximum of the load balance, work deviation, and
scatter metrics of children are attributed to the parent group. Programmers can
refine existing propagation metrics and define new ones. Given this ability, the
range of values and other summary statistics of a group can be easily captured
(for example, as string attributes). One useful custom metric that programmers
could define is the percentage of time spent by a group on the critical path.

3.4 Separation

The separation phase groups non-problematic nodes to separate them from prob-
lematic nodes. This enables programmers to focus on problems and reduces graph
viewer load. For example, consider a fork-join group that encloses a thousand
grains among which only a single grain is problematic. An unseparated graph
would require all grains to be rendered, while a separated graph requires only
the rendering of one problematic grain and a non-problematic group node.

(a) (b) (c) (d) (e)
Fig. 3. Separation of problematic from non-problematic nodes. (a-b) Fork-join node
separation. (c-d) Linear node separation. (e) Local (blue) and global (red) critical paths

Separation traverses the aggregation tree in post-order and separates sub-
trees rooted at fork-join and linear nodes. In a fork-join separation, all non-

problematic children of a fork-join node are grouped under a newly-created
group node (Fig. 3a-b), while in a linear node separation, all consecutive non-
problematic children of a linear group node are grouped under a new linear group
node (Fig. 3c-d). After the separation phase, the aggregation tree is converted
back to a grain graph where non-problematic subgraphs are hidden.

3.5 Navigation

The navigation of an aggregated graph starts at the root and continues by pro-
gressively opening/closing group nodes to understand graph structure and prob-
lems (Fig. 4). In contrast to the navigation in unaggregated graphs, the cognitive
load on programmers and the graph viewer’s resources are reduced as only a sub-
set of the grains are laid out. Navigation is sped up using several optimizations:

(a) (b)

(c)

(d) (e)

Fig. 4. Navigating the aggregated grain graph of NQueens program from BOTS for
high-parallelism input (n=14, cutoff=4). The graph has 21492 grains and 3073 group
nodes. Grains with low parallel benefit are highlighted as problems. (a-d) Drilling down
to sibling groups at a depth of 3 from the root group. (a) Root group. (b) At depth
1. (c) At depth 2. (d) At depth 3. (e) Drilling down along the critical path to sibling
groups at the lowest depth.

1. Groups can be opened to show all grains including those inside subgroups
(full collapse), or drilled down to a specific group or depth level (Fig. 4).

2. Group nodes are drawn as rounded rectangles with no filling to differen-
tiate them from grains. Group metrics are shown in a separate property
window, similar to grains. Opened groups grow as large as required to en-
velop members whereas closed group nodes have a constant size. The borders
of problematic closed groups are colored red to draw programmer attention,
while the borders of non-problematic groups are colored green for quick iden-
tification. Our choices of group colors and sizes allow programmers already
familiar with grain graphs to smoothly transit to the aggregation feature.

3. Once a group’s structure is known, other similarly structured groups can be
navigated confidently or skipped if problem-free. For example, twelve groups
in Fig. 4d have the same structure. Group similarity is computed on-demand
using a Weisfeiler-Lehman graph kernel [9].

4. Groups on the global critical path (gcb) are inspected first since they are
good optimization candidates (Fig. 4e). The local critical path of groups not
on the gcb can be computed on-demand and used for prioritized inspection
(Fig. 3e). If off-gcb grains are optimized to reduce the total amount of work,
the resulting slack can be used to execute grains on the gcb.

4 Prototype Implementation

The grain graph visualization is implemented in a prototype [10] that produces
grain graphs in GRAPHML by processing profiling data from OMPT exten-
sions [11] or the MIR runtime system [12, 4, 13]. We extended the prototype
to produce aggregated graphs upon programmer request [14]. The aggregation
method was implemented in C++, leveraging support for nested groups [15] in
GRAPHML and using the igraph [16] library for basic graph processing.

We used the graph viewer yEd [17] to visualize aggregated grain graphs since
it has sufficiently mature support for GRAPHML files with nested aggregations.
For example, it has features to interactively open and close groups, and jump to
groups at any hierarchy level. Its property editor dialog shows the annotations of
group nodes. Switching between problem views was achieved by cycling through
tabs that highlighted different problems.

External programs parameterized by group identifiers were used to compute
local critical path and similarity. These programs do not update the visualization
and programmers are required to manually load their output into yEd. Similarity
was computed using a third-party implementation [18] of the Weisfeiler-Lehman
graph kernel.

We recognize that interactions with aggregated graphs in yED have quite
some room for improvement. Our plan is to incorporate improvements in a ded-
icated grain graph viewer as yEd is closed-source. The dedicated viewer will
also enable programmers to define custom metrics derived from basic grain and
group metrics in a GUI. This improves over the prototype where programmers
customize metrics by editing source-code in convenient locations.

5 Evaluation

We tested our prototype on C/C++ benchmarks from SPEC OMP 2012 (SPEC-
OMP12), Barcelona OpenMP Task Suite v2.1.2 (BOTS) and Parsec v3.0 (Par-
sec). The benchmarks were compiled with MIR-linked GCC v4.4.7 and profiled
on a 48-core machine with 64GB memory and four AMD Opteron 6172 pro-
cessors running at 2.1GHz with frequency scaling disabled. We provided input
values that exposed abundant, fine-grained parallelism to standard OpenMP
programs to obtain large grain graphs (Table 1).

5.1 Visible node count

We use the metric visible node count (θ) to judge the ability of our aggregation
method to reduce programmer effort in navigating and diagnosing problems.
θ is defined as the minimum number of visible nodes in a grain graph while
diagnosing a problematic grain. If it is small, the cognitive load on programmers
and the resource requirements of viewers are reduced.

The visible node count for a problematic grain in an aggregated graph is the
number of nodes exposed by opening groups in the path leading to the grain. In
contrast, the visible node count in an unaggregated graph is equal to the number
of nodes in the entire graph irrespective of the position of the problematic grain,
assuming programmers do not pan and zoom to the vicinity of the problematic
grain manually.

Table 1 shows the maximum θ for two cases. The first is a conservative case
(θmax

c) that assumes all grains in the graph are problematic, while the second
(θmax

pb) considers graphs with low parallel benefit. For both cases, the reduction
in maximum θ compared to the total size of the graph, i.e., the maximum θ for
the unaggregated graph, is reported as Savings.

Table 1. Benefit of aggregation for standard OpenMP benchmarks.

Benchmark Input #Nodes #Grains θmax
c

Savings
(%)

Low Parallel Benefit
#Prbl.
Grains θmax

pb

Savings
(%)

Strassen1 8192, 128, 2000 176480 137258 60 99.97 157 49 99.97

Bodytrack2 B261, 4, 261, 4000, 5, 3, 48, 0 126615 69061 5767 95.45 24627 5757 95.45

Floorplan1 15, 7 117960 82490 149 99.87 31125 148 99.87

376.kdtree3 200000, 10, 2 32808 16400 58 99.82 2055 57 99.83

NQueens1 14, 4 24565 21492 70 99.71 10540 66 99.73

359.botsspar3 64, 64 24161 23905 1154 95.22 2 9 99.96

358.botsalgn3 prot.200.aa 20505 20101 406 98.02 7 17 99.92

Sort1 20971520, 65536, 8192, 128 20293 11509 55 99.73 288 51 99.75

FFT1 16777216, 8192, 2 9240 4592 53 99.43 414 49 99.47

367.imagick3 See caption of Fig. 5 3935 3801 405 89.71 649 182 95.37

Blackscholes2 4M 2205 1201 112 94.92 400 112 94.92

Freqmine2 kosarak 990k.dat, 790 2111 2017 389 81.57 66 30 98.58
1 BOTS 2 Parsec 3 SPEC-OMP12

For the conservative case, we see a large reduction in θ. The biggest saving
is 99.97% for the Strassen benchmark and the smallest saving is 81.57% for
Freqmine, with an average saving of 95.98%. This shows that aggregation can
significantly reduce θ for any problematic grain in our evaluation setup.

For the second case, we see a further reduction in θ since non-problematic
grains are grouped during the separation phase (Section 3). Benchmarks Fre-
qmine, 367.imagick, 358.botsalgn, 359.botsspar, show large savings from aggre-
gation since they contain a small number of problematic grains. On the other
hand, Bodytrack and Floorplan show barely any improvement over the conser-
vative case due to a higher concentration of problematic grains that are clustered
as siblings. Problematic siblings are ignored during separation by design.

5.2 Reducing distractions

We further illustrate the benefit of aggregation using the 367.imagick benchmark
from SPEC-OMP12 for an input that SPEC programmers noticed as poorly
scaling. The unaggregated grain graph shows a chain of nine dense for-loops
(Fig. 5a). The sixth loop contains several chunks that suffer from low parallel
benefit since several instances of the parallelization-throttling macro omp throttle
are missing in the source. Diagnosing these problematic chunks requires pro-
grammers to sweep attentively across the graph ignoring the abundance of non-
problematic grains and the frequent non-responsive rendering of the graph. The
aggregated graph enables programmers to diagnose problematic chunks group
by group (Fig. 5b), keeping only those groups with problematic chunks open,
while uninteresting loops and non-problematic chunks are hidden from sight.
This results in a more responsive graph viewer since fewer nodes need to be
rendered.

(a)

(b)

Fig. 5. Diagnosing problems with grains of 367.imagick from SPEC-OMP12 for input
-shear 31 -resize 1280x960 -negate -edge 14 -implode 1.2 -flop -convolve

1,2,1,4,3,4,1,2,1 -edge 100 ref/input/input1.tga. (a) Sweeping across the en-
tire unaggregated graph with 3801 grains to spot problems. (b) Aggregated grain graph
enables programmers to diagnose problematic grains group-wise. Non-problematic
grains are separated to promote focus (inset).

5.3 Similarity across runs

Grain graphs produced from two independent executions of a given program can
be different in shape due to unpredictable inlining decisions taken by the run-

time system or if the program adapts its behavior sensitive to available execution
resources. Understanding such changes can provide vital clues for problem diag-
nosis. However, detecting the dissimilar sections by manually inspecting a pair
of large grain graphs is extremely tiring and akin to finding matches between
fingerprints using a magnifying lens.

Similarity is a powerful metric that not just helps to skip over structurally
similar groups within the same graph (as demonstrated in Section 3.5), but can
also compare groups across runs to detect structural differences. Programmers
can gradually open two graphs side-by-side and compute the similarity met-
ric for visible groups using their schedule-independent identifiers. Those groups
that have the same identifier but different similarity metrics are the sections
that have changed between the graphs. We demonstrate this for the Floorplan
program from BOTS in Figure 6. Floorplan is a search-based program whose
pruning behavior changes non-deterministically when more cores are allotted for
execution.

(a)

(b)

L1

M1,N1,O1 P1,Q1 R1

L2

M2,N2,O2 P2,Q2 R2

Fig. 6. Finding dissimilar sections in grain graphs from two independent executions of
the non-deterministic Floorplan program from BOTS for input cell-file=input.5,

cutoff=5. (a) Graph produced from execution on 4 cores has 7974 grains. (b) Graph
produced from execution on 48 cores has 3190 grains. The similarity metric allows
programmers to understand without inspection that groups L1-2, M1-2, N1-2, and O1-
2 have the same structure but P1-2, Q1-2, and R1-2 do not. Groups R1-2 are opened
to show the dissimilarity. R2 encloses fewer subgroups than R1.

6 Related Work

Aggregation is a standard approach to scale visualizations with increasing data [19,
20]. Sensible dimensions for aggregation include the program structure (e.g.
tasks), middleware stack (worker threads), physical processing components (pro-
cessors), and the visualization (node-links). However, aggregation can remove
vital diagnosis data when applied aggressively across several dimensions. Isaacs
et al. [19] recognize the balance between aggregation aggressiveness and informa-
tion preservation as an important challenge. Our method strives to maintain this
balance by reducing the size of the rendered graph and focusing it on problematic
sections, while keeping the expected fork-join perspective.

For space reasons, we restrict the discussion to abstraction-centric, logical-
time aggregated visualizations similar to grain graphs, and refer readers for other
visualizations to recent surveys [19, 20] and a visualization explorer [21].

The dominant aggregation scheme in visualizations is statistical rather than
visual, i.e., metrics of selected elements in the main visualization are aggregated
statistically and reported separately, typically as a property table [22–27]. The
cognitive load of the main visualization is only reduced by zooming out to focus
on large elements, while support for visual aggregation at the same zoom level is
absent. Consequently, such visualizations suffer similar navigation and diagnosis
difficulties as large unaggregated grain graphs.

The aggregation method for task graphs in DAGViz [28] resembles our work.
It presents programmers with a single aggregated node that can be interactively
opened to reveal subgraphs as well as a dedicated viewer. However, our approach
is tailored to grain graphs and is unique in tracing the critical path and identi-
fying the similarity of subgraphs. Unaggregated grain graphs are more effective
in pinpointing problems than unaggregated DAGViz graphs due to more de-
rived metrics. The expansion of DAGViz graphs results also in the rendering of
more nodes as they show a fork-node per grain. Grain graphs avoid this thanks
to fork-node reductions that produce a fork-node per set of siblings. DAGViz
combats the scaling problem by using an elegant aggregation method that re-
duces subgraphs that executed wholly on a single worker-thread into a single,
non-collapsible node.

ThreadScope [29] visualizes the logical-time structure of task-parallel pro-
grams. Its memory operations nodes can be grouped to improve clarity, but it
is unclear whether programmers can interact with groups to uncover members.

The causality graph [30] visualization permits programmers to manually se-
lect and repeatedly aggregate nodes into supernodes, while special care must be
taken to avoid graph cycles on their creation. Supernode metrics include the local
critical path and metrics computed using user-defined combinators. The causal-
ity graph presents an unaggregated graph by default, while we present a fully
aggregated graph and use sensible aggregation metrics to guide programmers.

7 Conclusion

This paper contributes an aggregation method for grain graphs that enables pro-
grammers to easily understand problems in highly-parallel OpenMP programs.
Our method groups nodes arranged in recurring patterns to produce an aggre-
gated graph that programmers can navigate by progressively opening and clos-
ing groups. Problematic groups are highlighted and non-problematic sections are
cleared from sight, enabling focus without compromising the fork-join perspec-
tive expected by programmers. Using standard OpenMP programs as examples,
we demonstrate a significant reduction of visible nodes throughout problem di-
agnosis. For future work, we plan to implement a dedicated grain graph viewer
that smoothly and precisely guides programmers towards OpenMP problems
and hints at solutions.

Acknowledgment

The paper was funded by the TULIPP project (grant number 688403) and the
READEX project (grant number 671657) from the EU Horizon 2020 Research
and Innovation programme. The authors thank NTNU colleagues Peder Voldnes
Langdal, Magnus Själander, Jan Christian Meyer, and Magnus Jahre for con-
structive comments and KTH Royal Institute of Technology for providing test
machinery.

References

1. Muddukrishna, A., et al.: Grain Graphs: OpenMP performance analysis made
easy. In: PPoPP. (2016)

2. Olivier, S.L., et al.: Characterizing and mitigating work time inflation in task
parallel programs. In: SC. (2012)

3. Yoo, R.M., et al.: Locality-aware task management for unstructured parallelism:
A quantitative limit study. In: SPAA. (2013)

4. Muddukrishna, A., et al.: Locality-aware task scheduling and data distribution for
openmp programs on numa systems and manycore processors. Scientific Program-
ming (2015)

5. Isaacs, K.E., et al.: Combing the communication hairball: Visualizing large-scale
parallel execution traces using logical time. InfoVis (2014)

6. Cuny, J.E., et al.: Logical time in visualizations produced by parallel programs.
In: IEEE Conference on Visualization. (1992)

7. Sugiyama, K., et al.: Methods for visual understanding of hierarchical system
structures. SMC (1981)

8. Eiglsperger, M., et al.: An efficient implementation of Sugiyama’s algorithm for
layered graph drawing. In: International Symposium on Graph Drawing. (2004)

9. Shervashidze, N., et al.: Weisfeiler-Lehman graph kernels. JLMR (2011)
10. Muddukrishna, A., et al.: anamud/grain-graphs: Grain Graphs v1.0.0 (2017)

https://doi.org/10.5281/zenodo.439355.
11. Langdal, P.V., et al.: Extending OMPT to Support Grain Graphs. In: IWOMP.

(2017)

12. Muddukrishna, A., et al.: anamud/mir-dev: MIR v1.0.0 (2017) https://doi.org/
10.5281/zenodo.439351.

13. Muddukrishna, A., et al.: Characterizing task-based OpenMP programs. PLoS
ONE (2015)

14. Reissmann, N.: phate/ggraph: Vpa17 (2017) https://doi.org/10.5281/zenodo.

836838.
15. Brandes, U., et al.: GRAPHML primer (2017) http://graphml.graphdrawing.

org/primer/graphml-primer.html. Accessed 27 July 2017.
16. Csardi, G., et al.: The igraph software package for complex network research.

InterJournal (2006)
17. yWorks GmBh: yEd graph editor (2015) http://www.yworks.com/en/products_

yed_about.html. Accessed 10 April 2015.
18. Sugiyama, M., et al.: graphkernels: R and python packages for graph comparison.

Bioinformatics (2017)
19. Isaacs, K.E., et al.: State of the art of performance visualization. EuroVis (2014)
20. Von Landesberger, T., et al.: Visual analysis of large graphs: state-of-the-art and

future research challenges. In: Computer graphics forum. (2011)
21. Katherine Isaacs: Performance Visualization: Living digital library of State of the

Art of Performance Visualization (2017) http://cgi.cs.arizona.edu/~kisaacs/
STAR/. Accessed 31 July 2017.

22. Brinkmann, S., et al.: Task debugging with TEMANEJO. In: Tools for High
Performance Computing 2012. (2013)

23. Barcelona Supercomputing Center: OmpSs task dependency graph (2013) http:

//pm.bsc.es/ompss-docs/user-guide/run-programs-plugin-instrument-tdg.

html. Accessed 10 April 2015.
24. Subotic, V., et al.: Programmability and portability for exascale: Top down pro-

gramming methodology and tools with StarSs. Journal of Computational Science
(2013)

25. Blochinger, W., et al.: Visualizing structural properties of irregular parallel com-
putations. In: Vissoft. (2005)

26. Haugen, B., et al.: Visualizing Execution Traces with Task Dependencies. In: VPA.
(2015)

27. Drebes, A., et al.: Language-Centric Performance Analysis of OpenMP Programs
with Aftermath. In: IWOMP. (2016)

28. Huynh, A., et al.: DAGViz: a DAG visualization tool for analyzing task-parallel
program traces. In: VPA. (2015)

29. Wheeler, K.B., et al.: Visualizing massively multithreaded applications with
ThreadScope. Concurrency and Computation: Practice and Experience (2010)

30. Zernik, D., et al.: Using visualization tools to understand concurrency. IEEE
Software (1992)

