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Abstract As data science continues to grow in popularity, there will be an increasing
need to make data science tools more scalable, flexible, and accessible. In particu-
lar, automated machine learning (AutoML) systems seek to automate the process
of designing and optimizing machine learning pipelines. In this chapter, we present
a genetic programming-based AutoML system called TPOT that optimizes a series
of feature preprocessors and machine learning models with the goal of maximizing
classification accuracy on a supervised classification problem. Further, we analyze
a large database of pipelines that were previously used to solve various supervised
classification problems and identify 100 short series of machine learning operations
that appear the most frequently, which we call the building blocks of machine learn-
ing pipelines. We harness these building blocks to initialize TPOT with promising
solutions, and find that this sensible initialization method significantly improves
TPOT’s performance on one benchmark at no cost of significantly degrading per-
formance on the others. Thus, sensible initialization with machine learning pipeline
building blocks shows promise for GP-based AutoML systems, and should be fur-
ther refined in future work.
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1 Introduction

Machine learning is often touted as a “field of study that gives computers the ability
to learn without being explicitly programmed” [26]. Despite this common claim, it
is well-known by machine learning practitioners that designing effective machine
learning pipelines is often a tedious endeavor, and typically requires considerable
experience with machine learning algorithms, expert knowledge of the problem
domain, and brute force search to accomplish. Figure 1 depicts a typical machine
learning pipeline, where each step requires intervention by machine learning practi-
tioners. Thus, contrary to what machine learning enthusiasts would have us believe,
machine learning still requires considerable explicit programming.

In response to this challenge, several automated machine learning methods have
been developed over the years [14]. Over the past year, we have been developing a
Tree-based Pipeline Optimization Tool (TPOT) that automatically designs and op-
timizes machine learning pipelines for a given problem domain [21], without any
need for human intervention. In short, TPOT optimizes machine learning pipelines
using a version of genetic programming (GP), a well-known evolutionary compu-
tation technique for automatically constructing computer programs [16, 1]. Previ-
ously, we demonstrated that combining GP with Pareto optimization enables TPOT
to automatically construct high-accuracy and compact pipelines that consistently
outperform basic machine learning analyses [20]. In this chapter, we report on our
progress toward introducing sensible initialization [12] of the GP population into
TPOT, with the goal of enabling TPOT to harness expert knowledge about machine
learning pipelines to efficiently discover effective pipelines for a given problem do-
main.

Automated by TPOT

Raw Data Data Cleaning

Feature 
Preprocessing

Feature 
Construction

Model 
Selection

Feature 
Selection

Parameter 
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Fig. 1 A typical machine learning pipeline. Machine learning practitioners often start with a raw
data set that must be formatted, have missing values imputed, and otherwise prepared for analysis.
Following this step, practitioners must often transform the feature set into a format that is amenable
to modeling, for example by preprocessing the features via scaling, constructing new features from
existing features, or removing less useful features via feature selection. Next, practitioners must
select a machine learning model to fit to the data, then optimize the parameters of the model and
feature transformation operations to allow the model to best capture the underlying signal in the
data. At the end of this process, practitioners must evaluate their pipeline on a validation data set
that the pipeline never saw before, which allows the practitioners to determine whether the pipeline
generalizes beyond the initial training data.
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Previous research on the initialization of GP populations has shown that the ini-
tialization process can vitally affect the performance of GP algorithms [18, 22, 9].
However, most of this research has focused on generating a diversity of valid GP
tree structures, which may not be useful in all application domains. Here we follow
in the footsteps of [12] and focus on harnessing expert knowledge—in this case, ex-
pert knowledge about machine learning pipelines—to initialize the GP population.
In particular, we attempt to identify the building blocks [10] of machine learning
pipelines, and harness these building blocks for sensible initialization of the GP
population in TPOT.

2 Automated Machine Learning

In the early days of machine learning automation research (AutoML for short), re-
searchers focused primarily on hyperparameter optimization [14]. For example, the
most commonly-used form of hyperparameter optimization is grid search, where
users apply brute force search to evaluate a predefined range of model parameters
to find the model parameters that allows for the best model fit. More recently, re-
searchers showed that it is possible to discover optimal parameter sets faster than
exhaustive grid search by randomly sampling within a predefined grid search [2],
which shows promise for guided search in the hyperparameter space. Bayesian op-
timization, in particular, has proven effective for hyperparameter optimization and
has even outperformed manual hyperparameter tuning by expert practitioners [27].

Another focus of AutoML research has been feature construction. One recent ex-
ample of automated feature construction is the “Data Science Machine,” which au-
tomatically constructs features from relational databases via deep feature synthesis.
In their work, [15] demonstrated the crucial role of automated feature construction
in machine learning pipelines by entering their Data Science Machine in three ma-
chine learning competitions and achieving expert-level performance in all of them.
Thus, we know that automated feature construction can play a vital role in AutoML
systems.

More recently, [6] developed an AutoML system called auto-sklearn, which uses
Bayesian optimization to discover the ideal combination of data and feature prepro-
cessors, models, and model hyperparameters to maximize classification accuracy for
a particular problem domain. However, auto-sklearn optimizes over a predefined set
of pipelines that only include one data preprocessor, one feature preprocessor, and
one model, which precludes auto-sklearn from producing arbitrarily large pipelines
that may be important for AutoML.

[30] demonstrated an AutoML system using genetic programming (GP) to opti-
mize machine learning pipelines for signal processing, and found that GP is capable
of designing better pipelines than humans for one signal processing task. As such,
GP shows considerable promise in the AutoML domain, and we significantly extend
this work with TPOT.
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3 Methods

In the following sections, we provide an overview of the Tree-based Pipeline Op-
timization Tool (TPOT), including the machine learning operators used as genetic
programming (GP) primitives, the tree-based pipelines used to combine the primi-
tives into working machine learning pipelines, and the GP algorithm used to evolve
said tree-based pipelines. We further describe the process we implemented to pro-
vide sensible initialization for the GP algorithm in TPOT, and conclude with a
description of the data sets used to evaluate this new version of TPOT. TPOT is
an open source project on GitHub, and the underlying Python code can be found
at https://github.com/rhiever/tpot.

3.1 Machine Learning Pipeline Operators

At its core, TPOT is a wrapper for the Python machine learning package, scikit-
learn [23]. Thus, each machine learning pipeline operator (i.e., GP primitive) in
TPOT corresponds to a machine learning algorithm, such as a supervised classifi-
cation model. All implementations of the machine learning algorithms listed below
are from scikit-learn (except XGBoost), and we refer to the scikit-learn documenta-
tion [23] and [13] for detailed explanations of the machine learning algorithms used
in TPOT.

Supervised Classification Operators. DecisionTree, RandomForest, eXtreme
Gradient Boosting Classifier (from XGBoost, [4]), LogisticRegression, and KNear-
estNeighborClassifier. Classification operators store the classifier’s predictions as a
new feature as well as the classification for the pipeline.

Feature Preprocessing Operators. StandardScaler, RobustScaler, MinMaxS-
caler, MaxAbsScaler, RandomizedPCA [19], Binarizer, and PolynomialFeatures.
Preprocessing operators modify the data set in some way and return the modified
data set.

Feature Selection Operators. VarianceThreshold, SelectKBest, SelectPercentile,
SelectFwe, and Recursive Feature Elimination (RFE). Feature selection operators
reduce the number of features in the data set using some criteria and return the
modified data set.

We also include an operator that combines disparate data sets, as demonstrated in
Figure 2, which allows multiple modified copies of the data set to be combined into
a single data set. Lastly, we provide integer and float terminals to parameterize the
various operators, such as the number of neighbors (k) in the k-Nearest Neighbors
Classifier.

https://github.com/rhiever/tpot
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Fig. 2 An example tree-based pipeline from TPOT. Each circle corresponds to a machine learning
operator, and the arrows indicate the direction of the data flow.

3.2 Constructing Tree-based Pipelines

To combine these operators into a machine learning pipeline, we treat them as GP
primitives and construct GP trees from them. Figure 2 shows an example tree-based
pipeline, where two copies of the data set are provided to the pipeline, modified in
a successive manner by each operator, combined into a single data set, and finally
used to make classifications. Because all operators receive a data set as input and
return the modified data set as output, it is possible to construct arbitrarily large
machine learning pipelines that can act on multiple copies of the data set. Thus, GP
trees provide an inherently flexible representation of machine learning pipelines.

In order for these tree-based pipelines to operate, we store three additional vari-
ables for each record in the data set. The “class” variable indicates the true label for
each record, and is used when evaluating the accuracy of each pipeline. The “guess”
variable indicates the pipeline’s latest guess for each record, where the classifica-
tions from the last classification operator in the pipeline are stored as the “guess”.
Finally, the “group” variable indicates whether the record is to be used as a part of
the internal training or testing set, such that the tree-based pipelines are only trained
on the training data and evaluated on the testing data. We note that the data set
provided to TPOT is split into an internal stratified 75%/25% training/testing set.

3.3 Optimizing Tree-based Pipelines

To automatically generate and optimize these tree-based pipelines, we use a GP al-
gorithm [16, 1] as implemented in the Python package DEAP [8]. The TPOT GP
algorithm follows a standard GP process with settings listed in Table 1. To begin,
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Table 1 Genetic programming algorithm settings.

GP Parameter Value
Population size 100
Generations 100
Multi-objective selection 5 copies of top 20% according to NSGA-II
Per-individual crossover rate 5%
Per-individual mutation rate 90%
Crossover One-point crossover
Mutation Point, insert, & shrink 1/3 chance of each
Replicate runs with unique RNG seeds 30

the GP algorithm generates 100 random tree-based pipelines and evaluates their
accuracy on the data set. For every generation of the GP algorithm, the algorithm
selects the top 20 pipelines in the population according to the NSGA-II selection
scheme [5], where pipelines are selected to simultaneously maximize classification
accuracy on the data set while minimizing the number of operators in the pipeline.
Each of the top 20 selected pipelines produce five offspring into the next gener-
ation’s population, 5% of those offspring experience crossover with another off-
spring, then 90% of the remaining unaffected offspring experience random muta-
tions. Every generation, the algorithm updates a Pareto front of the non-dominated
solutions [5] discovered at any point in the GP run. The algorithm repeats this
evaluate-select-crossover-mutate process for 100 generations—adding and tuning
pipeline operators that improve classification accuracy and pruning operators that
degrade classification accuracy—at which point the algorithm selects the highest-
accuracy pipeline from the Pareto front as the representative “best” pipeline from
the run.

3.4 Sensible Initialization in TPOT

Next, we implement a version of TPOT with sensible initialization, which we call
TPOT-SI. In TPOT-SI, the GP algorithm creates the initial population by seeding
it with a random selection from 100 building blocks that we identified from pre-
vious TPOT runs. These building blocks consist of tree-based pipelines with 1–3
operators, e.g., one building block that we identified was “PolynomialFeatures →
LogisticRegression,” where the building block casts the data set into a polynomial
feature space then provides those features to a logistic regression model to make the
classification.

The primary idea behind providing sensible initialization via building blocks is
that genetic programming algorithms typically rely heavily on crossover [24]. Thus,
we want to initialize the GP population with building blocks that 1) start the GP
population off with pipelines that already effectively solve at least part of the clas-
sification task, and 2) can be mixed and matched to build better pipelines in a more
efficient manner. However, we note that our preliminary investigations showed that a
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high crossover regime (per-individual crossover rate = 90%, per-individual mutation
rate = 5%) performed worse than a high mutation regime (per-individual crossover
rate = 5%, per-individual mutation rate = 90%) for both TPOT and TPOT-SI, so we
focused on the high mutation regime in this chapter.

To identify these building blocks, we ran 30 replicates of TPOT on the 160 super-
vised classification benchmark data sets described in Section 3.5. We identified the
highest-accuracy tree-based pipeline from the final Pareto front for each run, then
performed an “n-gram” analysis (up to n = 4) of the pipelines to count the most
frequent combinations of pipeline operators. For example, in Figure 2 “SelectKBest
→ KNearestNeighborClassifier” would be a 2-gram, and “KNearestNeighborClas-
sifier” would be a 1-gram. After counting all of the n-grams in each tree-based
pipeline, we summed the counts across all 4,800 replicates to determine the 100
most frequent n-grams, which we used as TPOT building blocks1. We have listed
the top 10 most frequent building blocks in Table 2.

Table 2 10 most frequent machine learning pipeline building blocks.

RandomForest
XGBClassifier
LogisticRegression
DecisionTree
KNearestNeighborClassifier
XGBClassifier → RandomForest
LogisticRegression → RandomForest
PolynomialFeatures → LogisticRegression
PolynomialFeatures → RandomForest
SelectPercentile → RandomForest

3.5 Benchmark Data

We compiled 160 supervised classification benchmarks2 from a wide variety of
sources, including the UCI machine learning repository [17], a large preexisting
benchmark repository from [25], and simulated genetic analysis data sets from [28].
These benchmark data sets range from 60 to 60,000 records, few to hundreds of
features, and include binary as well as multi-class supervised classification prob-
lems. We selected data sets from a wide range of application domains, including
genetic analysis, image classification, time series analysis, and many more. Thus,
this benchmark represents a comprehensive suite of tests with which to evaluate
automated machine learning systems.

1 Full list of building blocks: https://gist.github.com/rhiever/
27f795b00b95751ee38fd9e946c72b0b
2 Benchmark data available at http://www.randalolson.com/data/benchmarks/

https://gist.github.com/rhiever/27f795b00b95751ee38fd9e946c72b0b
https://gist.github.com/rhiever/27f795b00b95751ee38fd9e946c72b0b
http://www.randalolson.com/data/benchmarks/
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4 Results

To provide an initial evaluation of TPOT-SI, we ran 30 replicates of TPOT-SI on
the 160 supervised classification benchmark data sets described in Section 3.5. We
compare these experiments to the same experiments with a version of TPOT without
sensible initialization. In all cases, we measured pipeline accuracy as balanced accu-
racy [29], which corrects for class frequency imbalances in data sets by computing
the accuracy on a per-class basis then averaging the per-class accuracies.

Figure 3 summarizes the difference in performance between TPOT-SI and TPOT
on each benchmark. Overall, TPOT-SI showed no improvement on a large portion
of the 160 benchmarks, small performance degradation on a few benchmarks, and
fair improvement on a handful of benchmarks. Notably, the largest performance
degradation was on the “tutorial” benchmark from [25] with a 5% median accu-
racy decrease, and the largest performance increase was on the “parity5” benchmark
from [25] with a 12.5% median accuracy increase.

In order to provide better insight into why so many benchmarks saw no improve-
ment with TPOT-SI, we plotted the original TPOT accuracy on each data set vs. the
TPOT-SI accuracy on the corresponding data set in Figure 4. 49 of the benchmarks
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Fig. 3 Violin plot of the difference in median balanced accuracy between TPOT-SI and TPOT on
the benchmarks. Positive values indicate an improvement in accuracy from TPOT-SI, whereas neg-
ative values indicate a degradation of accuracy from TPOT-SI. The width of the violin represents
the relative density of points at that value, e.g., most differences are centered around 0% accu-
racy improvement. We note that the density is estimated from the underlying data, which is why it
appears that there are differences in accuracy below -5%.
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Fig. 4 Median balanced accuracy of TPOT-SI vs. the same for TPOT on the benchmarks. Each
point represents the median balanced accuracies for one benchmark. The line represents a linear
regression fit to the median accuracies, whereas the histograms on the sides show the density of
the points on both axes.

were already solved (> 90% median balanced accuracy) with the base version of
TPOT, which is why TPOT-SI saw no improvement on many of the benchmarks.

Finally, we show the distribution of balanced accuracies on the 8 benchmarks
with the largest performance differences in Figure 5. Surprisingly, the only bench-
mark (out of all 160) with a statistically significant difference in performance is
the “analcatdata lawsuit” benchmark, where TPOT-SI allowed for a 9.2% higher
accuracy on average. In the other benchmarks, TPOT-SI allowed for small but sta-
tistically insignificant improvements over TPOT.
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Fig. 5 Box plots showing the distribution of balanced accuracies for the 8 benchmarks with the
biggest difference in median accuracy between TPOT-SI and TPOT. Each box plot represents 30
replicates, the inner line shows the median, and the notches represent the bootstrapped 95% confi-
dence interval of the median.

5 Summary and Discussion

In this chapter, we presented preliminary results from implementing sensible initial-
ization in TPOT. In summary, TPOT-SI saw significant improvement in performance
on only one benchmark out of 160 (Figure 5). Although our sensible initialization
method could likely use improvement, we note that TPOT-SI did not significantly
degrade performance on any of the benchmarks as well.

Of course, the key goal of this chapter extends beyond implementing a sensible
initialization method in TPOT: We seek to identify the building blocks of machine
learning pipelines, which is information that can be harnessed in many machine
learning applications. In this chapter, we suggest that machine learning building
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blocks are small sequences of machine learning operators that occur frequently in
pipelines used to solve benchmark classification problems. Although the building
blocks that we identified do not seem to significantly improve performance via sen-
sible initialization on many benchmarks, these results could be for many reasons.
For example, that not all of the building blocks that we used are useful for all of
the benchmarks, and in fact some could be detrimental on some benchmarks. We
discuss how these limitations can be overcome in Section 6.

Furthermore, TPOT-SI automatically optimized pipelines for all 160 bench-
marks, and discovered pipelines that achieve > 90% median balanced accuracy
on 52 of the benchmarks (and > 80% on 79 of them) without any prior knowl-
edge of the problem domains. These results show significant promise for GP-
based automated machine learning systems. We note, however, that TPOT should
not be considered a replacement for machine learning practitioners; rather, TPOT
saves practitioners time by automating the tedious portions of machine learning
pipeline design, but ultimately the practitioners will be responsible for deciding
on the final pipeline. Similarly, we consider TPOT to be a “Data Science As-
sistant” and idea generator because it can discover unique ways to model data
sets—and export its finding to the corresponding Python code—so practitioners
can take TPOT pipelines and customize them for their particular application. To
aid in the effort of providing an easily accessible GP-based automated machine
learning system, we have released TPOT as an open source Python application
at https://github.com/rhiever/tpot.

6 Looking Forward

The sensible initialization method implemented in TPOT-SI is quite simple, and
there are many refinements that can be made. For example, we can use meta-learning
techniques to intelligently match building blocks and pipeline configurations that
will work well on the particular data set being analyzed [7]. In short, meta-learning
uses information from previous machine learning runs to estimate how well each
pipeline configuration will work on a particular data set. To place data sets on a
standard scale, meta-learners compute meta-features from data sets, such as data set
size, the number of features, and various aspects about the features, which are then
used to map data set meta-features to corresponding pipeline configurations that
work well on data sets with those meta-features. Such an intelligent meta-learning
algorithm is likely to improve the TPOT sensible initialization process.

Similarly, we can harness expert knowledge about machine learning building
blocks to bias the GP mutation and crossover operations, similar to what was done
in [11]. In this case, we would provide the GP algorithm information about how well
particular pipeline combinations perform on average, e.g., “Replacing a Random-
Forest operator with a DecisionTree operator is 89% likely to degrade accuracy.”
This information could then be used to bias the mutation and crossover operations
toward producing better pipelines. Further, this information could be learned and

https://github.com/rhiever/tpot
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refined over the optimization process, such that the GP algorithm will learn what
makes an effective pipeline for the particular data set being analyzed.

Finally, population-based optimization methods such as GP are typically criti-
cized for maintaining a large population of solutions, which can prove to be slow and
wasteful for certain optimization problems. In this case, we can turn GP’s purported
weakness into a strength by creating an ensemble out of the GP populations. [3] ex-
plored this population ensemble method previously with standard GP and showed
significant improvement, and it is a natural extension to create ensembles out of
TPOT’s population of machine learning pipelines.

In conclusion, automated machine learning is a field of research that is ripe for
GP systems. We should focus our efforts on refining a GP-based automated machine
learning system, and in particular highlight GP’s strengths as compared to Bayesian
optimization, simulated annealing, and greedy optimization techniques. TPOT rep-
resents our effort toward this goal, and we will continue to refine TPOT until it
consistently produces human-competitive machine learning pipelines.
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LM009012, LM010098, and EY022300.
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