MERIC and RADAR generator: tools for energy
evaluation and runtime tuning of HPC
applications

Ondrej Vysocky®, Martin Beseda®, Lubomir Riha®, Jan Zapletal®,
Michael Lysaght®, and Venkatesh Kannan®

“IT4Innovations National Supercomputing Center,
VSB-Technical University of Ostrava, Czech Republic
®Irish Centre for High End Computing, Ireland
{ondrej.vysocky,martin.beseda,lubomir.riha, jan.zapletal}@vsb.cz
{michael.lysaght, venkatesh.kannan}@ichec.ie
http://wuw.it4i.cz
https://www.ichec.ie

Abstract. This paper introduces two tools for manual energy evalua-
tion and runtime tuning developed at IT4Innovations in the READEX
project. The MERIC library can be used for manual instrumentation and
analysis of any application from the energy and time consumption point
of view. Besides tracing, MERIC can also change environment and hard-
ware parameters during the application runtime, which leads to energy
savings.

MERIC stores large amounts of data, which are difficult to read by a
human. The RADAR generator analyses the MERIC output files to find
the best settings of evaluated parameters for each instrumented region. It
generates a M TEX report and a MERIC configuration file for application
production runs.

Keywords: READEX, MERIC, RADAR, energy efficient computing,
HDEEM, RAPL

1 Introduction

The Horizon 2020 project READEX (Runtime Exploitation of Application Dy-
namism for Energy-efficient eXascale computing) [18] deals with manual and
also automatic tools that analyze High Performance Computing (HPC) appli-
cations, and searches for the best combination of tuned parameter settings to
use them optimally for application needs. This paper presents tools developed
in the READEX project for manual evaluation of the dynamic behavior of the
HPC applications - the MERIC and RADAR generator.

The MERIC library evaluates application behavior in terms of resource con-
sumption, and controls hardware and runtime parameters such as the Dynamic
Voltage and Frequency Scaling (DVFS), Uncore Frequency Scaling (UFS), and
number of OpenMP threads through external libraries. User applications can be

2 MERIC and RADAR generator tools

instrumented using the MERIC manual instrumentation to analyze each part
of the code separately. The energy measurements are provided by the High Def-
inition Energy Efficiency Monitoring (HDEEM) system [8], or by Running Av-
erage Power Limit (RAPL) counters [10].

The MERIC measurement outputs are analyzed using the RADAR generator,
which produces detailed reports, and also a MERIC configuration file, which
can be used to set the best parameter values for all evaluated regions in the
application.

There are several research activities in HPC application energy saving due
to applying power capping [11][6] to the whole application run instead of parsing
the application into regions and applying dynamic tuning. Other research is
dealing with scheduling system using dynamic power capping with negligible
time penalty based on previous application runs [16]. Dynamic application tuning
is the goal of the READEX project, which should deliver a tool-suite for fully
automatic application instrumentation, dynamism detection and analysis. The
analysis should find the configuration that provide the maximum energy savings
and can be used for the future production runs. The READEX tools are very
complex and may not be easy to apply. Our tools present the same approach with
focus on usage friendliness, albeit providing manual tuning only. Furthermore,
the READEX tools are focused on x86 platforms only, which is not the case for
MERIC.

2 Applications Dynamism

The READEX project expects that HPC applications have different needs in
separate parts of the code. To find these parts inside a user application, three
dynamism metrics are presently measured and used in the READEX project.
They include:

1. Execution time
2. Energy consumed
3. Computational intensity

Among these three metrics, the semantics of execution time and energy con-
sumed are straightforward. Variation in the execution time and energy consumed
by regions in an application during its execution is an indication of different re-
source requirements. The computational intensity is a metric that is used to
model the behaviour of an application based on the workload imposed by it on
the CPU and the memory. Presently, computational intensity is calculated using
the following formula 1 and is analogous to the operational intensity used in the
roofline model [22].

Total number of instructions executed

Computational intensity =

(1)

Selected regions in the user application are called significant. To detect the
significant regions manually, profiling tools such as Allinea MAP [1] are used.

Total number of L3 cache misses

MERIC and RADAR generator tools 3

The dynamism observed in an application can be due to variation of the
following factors:

— Floating point computations (for example, this may occur due to variation
in the density of matrices in dense linear algebra).

— Memory read/write access patterns (for example, this may occur due to
variation in the sparsity of matrices in sparse linear algebra).

— Inter-process communication patterns (for example, this may occur due to
irregularity in a data structure leading to irregular exchange of messages for
operations such as global reductions).

— I/0 operations performed during the application’s execution.

— Different inputs to regions in the application.

To address these factors, a set of tuning parameters has been identified in the
READEX project to gain possible savings due to static and dynamic tuning.
The list of the parameters contains the following:

— hardware parameters of the CPU

— Core Frequency (CF)

~ Uncore frequency (UCF) *
— system software parameters

— number of OpenMP threads, thread placement
— application-level parameters

— depends on the specific application

All parameters can be set before an application is executed (this is called
static tuning), in addition some of them can be tuned dynamically during the
application runtime. For instance core and uncore frequencies can be switched
without additional overhead, but switching the number of threads can affect
performance due to NUMA effects and data placement and must be handled
carefully. Static and dynamic tuning leads to static and dynamic savings, re-
spectively.

Presently the MERIC tool (Section 3) is being developed and used in the
READEX project to measure the above-mentioned dynamism metrics and eval-
uate applications. When using MERIC it is possible to dynamically switch CPU
core and uncore frequencies and the number of used OpenMP threads. The mea-
surements collected by these tools for an application are logged into a READEX
Application Dynamism Analysis Report (RADAR) as described in Section 4.

3 Manual Dynamism Evaluation with MERIC

MERIC ? is a C++ dynamic library (with an interface for Fortran applica-
tions) that measures energy consumption and runtime of annotated regions in-
side a user application. By running the code with different settings of the tuning

! Uncore frequency refers to frequency of subsystems in the physical processor pack-
age that are shared by multiple processor cores, e.g., L3 cache and on-chip ring
interconnect.

2 MERIC repository: https://code.it4i.cz/vys0053/meric

4 MERIC and RADAR generator tools

parameters, we analyze possibilities for energy savings. Subsequently, the optimal
configurations are applied by changing the tuning parameters (list of parameters
mentioned in the previous Section 2) during the application runtime, which can
be also done by using MERIC. MERIC wraps a list of libraries that provide
access to different hardware knobs and registers, operating system and runtime
system variables, i.e. tuning parameters, in order to read or modify their values.
The main motivation for the development of this tool was to simplify the eval-
uation of various applications dynamic behavior from the energy consumption
point of view, which includes a large number of measurements.

The library is easy to use. After inserting the MERIC initialization func-
tion, it is possible to instrument the application through the so-called probes,
which wrap potentially significant regions of the analysed code. Besides storing
the measurement results, the user should not notice any changes in the behavior
of the application.

3.1 MERIC features

MERIC has minimal influence on the application’s runtime despite providing
several analysis and tuning features. Its overhead depends on the energy mea-
surement mode as described in this section, the amount of hardware performance
counters read, as well as the number of instrumented regions.

Environment settings

During the MERIC initialization and at each region start and end, the CPU
frequency, uncore frequency and number of OpenMP threads are set. To do so,
MERIC uses the OpenMP runtime API and the cpufreq [3] and x86_adapt [17]
libraries.

Energy measurement

The key MERIC feature is energy measurement using the High Definition Energy
Efficiency Monitoring (HDEEM) system located directly on computational nodes
that records 100 power samples per second of the CPUs and memories, and 1000
samples of the node itself via the BMC (Baseboard Management Controller) and
an FPGA (Field Programmable Gate Array). Figure 1 shows the system diagram
and a picture a node with the HDEEM.

HDEEM provides energy consumption measurement in two different ways,
and in MERIC it is possible to choose which one the user wants to use by setting
the MERIC_CONTINUAL parameter.

In one mode, the energy consumed from the point that HDEEM was initial-
ized is taken from the HDEEM Stats structure (a data structure used by the
HDEEM library to provide measurement information to the user application).
In this mode we read the structure at each region start and end. This solution is
straightforward, however, there is a delay of approximately 4 ms associated with
every read from the HDEEM API. To avoid the delay, we take advantage of
the fact that during measurement HDEEM stores power samples in its internal
memory. In the second mode MERIC only needs to record timestamps at the
beginning and the end of each region instead of calling the HDEEM API. This

MERIC and RADAR generator tools 5

Global node sensor

FPGA BMC L omar

Fig. 1. A HDEEM system located on a node and the system diagram [2].

results in a very small overhead for MERIC instrumentation during the appli-
cation runtime because all samples are transferred from the HDEEM memory
at the end of the application runtime. The energy consumption is subsequently
calculated from the power samples based on the recorded timestamps.

Contemporary Intel processors support energy consumption measurements
via the Running Average Power Limit (RAPL) interface. MERIC uses the RAPL
counters with 1kHz sampling frequency to allow energy measurements on ma-
chines without the HDEEM infrastructure as well as to compare them with the
HDEEM measurements.

The main disadvantage of using RAPL is that it measures CPUs and mem-
ories power consumption only, without providing information about the power
consumption of the blade itself. In the case of nodes with two Intel(R) Xeon(R)
CPU E5-E5-2680 v3 (2x 12 cores) processors the power baseline is approximately
70 W. To overcome this handicap we statically add this 70 W to our measure-
ments when using RAPL counters. MERIC uses the x86_adapt library to read
the RAPL counters.

The minimum runtime of each evaluated region has been set in the READEX
project to 100 ms when using HDEEM or RAPL, to have enough samples per
region to evaluate the region optimum configuration correctly.

Hardware performance counters

To provide more information about the instrumented regions of the application,
we use the perf_event and PAPI libraries, which provide access to hardware
performance counters. Values from the counters are transferred into cache-miss
rates, FLOPs/s 3 and also the computational intensity that is a key metric for
dynamism detection as described in Section 2.

3 The Intel Haswell processors do not support floating-point instructions coun-
ters. MERIC approximates FLOPs/s based on the counter of Advanced
Vector Extensions (AVX) calculation operations. For more information visit
https://github.com/RRZE-HPC/likwid /wiki/FlopsHaswell.

6 MERIC and RADAR generator tools

Shared interface for Score-P

The Score-P software system, as well as the MERIC library, allows users to
manually (and also automatically) instrument an application for tracing analysis.
Score-P instrumentation is also used in the READEX tool suite [13].

A user that has already instrumented an application using Score-P instru-
mentation or would want to use it in the future may use the readex.h header file
that is provided in the MERIC repository. This allows the user to only insert
the user instrumentation once, but for both MERIC and Score-P simultaneously.
When a user application is compiled, one has to define the preprocessor vari-
ables USE_MERIC, USE_SCOREP (Score-P phase region only) or alternatively
USE_SCOREP_MANUAL to select which instrumentation should be used.

Table 1 shows the list of functions defined in the header file, with their
MERIC and Score-P equivalents. Brief description of the mentioned MERIC
functions is provided in Section 3.2, description of the Score-P functions can be
found in its user manual [20].

Shared interface MERIC function |Score-P function

READEX_INIT MERIC_INIT -

READEX_CLOSE MERIC_CLOSE -

READEX_REGION_DEFINE|- SCOREP_USER_REGION_DEFINE

READEX REGION_START |MERIC_MeasureStart| SCOREP_USER_REGION_BEGIN
READEX REGION_STOP |MERIC_MeasureStop |[SCOREP_USER_REGION_END
READEX_PHASE_START MERIC_MeasureStart |SCOREP_USER_OA_PHASE_BEGIN
READEX_PHASE_STOP MERIC_MeasureStop |[SCOREP_USER_OA _PHASE_END
Table 1. Function names defined in the readex.h header file, that can be used
for MERIC and Score-P instrumentation.

MERIC requirements
MERIC currently adds synchronization MPI and OpenMP barriers into the ap-
plication code to ensure that all processes/threads under one node are synchro-
nized in a single region when measuring consumed resources or changing hard-
ware or runtime parameters. We realize that this approach inserts extra overhead
into application runtime and may discriminate a group of asynchronous appli-
cations. In future the library will allow the user to turn these barriers off.
Beyond the inserted synchronization the MERIC library requires several li-
braries to provide all previously mentioned features:

— Machine with HDEEM or x86_adapt library for accessing RAPL counters
— Cpufreq or x86_adapt library to change CPU frequencies
— PAPI and perf_event for accessing hardware counters

ARM Jetson TX1
The MERIC library was originally developed to support resource consumption
measurement and DVFS on Intel Haswell processors [9], however it has been

MERIC and RADAR generator tools 7

extended to also provide support for the Jestson/TX1 ARM system [12] located
at the Barcelona Supercomputing Center [14] (ARM Cortex-A57, 4 cores, 1.3
GHz) which supports energy measurements.

ARM systems are an interesting platform because they allow the setting of
much lower frequencies [7] and save energy accordingly. In the case that sys-
tem CPU uncore frequency is not possible to set, however, one can change the
frequency of the RAM. Minimum CPU core frequency is 0.5 GHz and the max-
imum is 1.3 GHz. The minimum and maximum RAM frequency is 40 MHz and
1.6 GHz, respectively. To change frequencies on Jetson, no third-party libraries
are necessary.

To gather power data, the Texas Instrument INA3221 chip is featured on
the board [4]. It measures the per-node energy consumption and stores samples
values in a file. It is possible to gather hundreds of samples per second, however
the measurement effects the CPU. The following Table 2 shows the impact of
sampling frequency on the CPU workload evaluated using htop *.

Sampling Frequency [Hz]| CPU workload
10 2%
50 4%
100 8%
200 14 %
500 23 %
1000 30%

Table 2. The Jetson/TX1 energy measurement interface and its effect on the CPU
workload when reading 10 up to 1000 power samples per second. The load was evaluated
using htop when running the power sampling only.

3.2 Workflow

First, the user has to analyze their application using a profiler tool (such as
Allinea MAP) and find the significant regions in order to cover the most con-
suming functions in terms of time, MPI communication, and 1/0O, and insert
MERIC instrumentation into code to wrap the selected sections of the code. A
region start function takes a parameter with the name of the region, but the
stop function does not have any input parameters, because it ends the region
that has been started most recently (last in, first out).

The instrumented application should be run as usual. To control MERIC
behaviour it is possible to export appropriate environment variables or define a
MERIC configuration file that allows the user to specify the settings not only
for the whole application run (as in the case of environment variables), but also

* htop repository: https://github.com/hishamhm /htop

8 MERIC and RADAR generator tools

control the behavior for separate regions, computation nodes, or their sockets.
The user can define hardware and runtime settings (CPU frequencies and number
of threads) as well as select energy measurement mode, hardware counters to
read and more.

4 RADAR: Measurement data analysis

RADAR presents a brief summary of the measurement results obtained with
MERIC. This is a merged form of automatically generated dynamism report
by both the RADAR generator (by IT4Innovations), described in detail in Sec-
tion 4.1 and the readex-dyn-detect (by the Technical University of Munich),
described in [19]. The report depicts diagrams of energy consumption with re-
spect to a set of tuning parameters. It also contains different sets of graphical
comparisons of static and dynamic significant energy savings across phases for
different hardware tuning parameter configurations. In each perspective, the
measured dynamism metrics are presented for the default configurations that
are used for the tuning parameters.

4.1 The RADAR generator

The RADAR generator ® allows users to evaluate the data measured by the
MERIC tool automatically, and to get an uncluttered summary of the results in
the form of a IXTEX file. Moreover, it is possible to include the report generated
by the readex-dyn-detect tool, as mentioned above.

Uheore healfiemeoedl 12 14 16 18 20 22 24 26 28 30
10:633 10.084 9.407 8.937 9.284 8.581 8.513 8.296

1.4 10.57 10.152 9.178 8.682 8.684 8.094 8.192 7.966 7.666
1.6 10.178 9.438 8.706 8.373 8.008 7.821 7.471 7.552

1.8 9.969 8.952 8.57 7.929 7.779 7.477

2 10.607 9.516 8.925 8.203 7.79 7.356

2.2 10.23 9.734 9.02 7.977

24 10.775 9.438 8.416 7.919 7.367

2.5 10.798 9.086 8.366 7.856 T7.555

Table 3. Heat map generated by the RADAR generator comparing impact of using
different CPU core and uncore frequencies at application runtime in seconds.

The report itself contains information about both static and dynamic savings,
represented not only by tables, but also plots and heat-maps. Examples can be
seen in Figure 3 and Table 3.

The generator is able to evaluate all chosen quantities at once, i.e. users do
not have to generate reports for energy consumption, and compute intensity and

5 RADAR generator repository: https://code.it4i.cz/bes0030/readex-radar

MERIC and RADAR generator tools 9

execution time separately, because they can be contained in one report together.
This provides the advantage of direct visual comparison of all optimal settings,
so users can achieve a greater understanding of the application behavior quickly.
The execution time change for energy-optimal settings is also included in the
report, as can be seen in Table 4.

Overall application evaluation

Default Default Best static Static Dynamic

settings values config. Savings Savings
Energy consump- 24 threads, 12 threads, 371.80] 4.87J of
tion [J] (Samples), 3.0GHz UCF, 2473.63J 3.0 GHz UCF, (15'03%) 2101.83J
Blade summary 2.5 GHz CF 2.5 GHz CF ' (0.23%)
Runtime of func- 24 threads, 18 threads, 0.265 0.0073s
tion [s], 3.0GHz UCF, 6.37s 3.0GHz UCF, (4 10%) of 6.11s
Job info - hdeem 2.5 GHz CF 2.5GHz CF ' (0.12%)

Run-time change with the energy optimal settings: -0.01s (98.19% of default time)

Table 4. Summary table generated by the RADAR generator presenting possible en-
ergy or runtime saving that can be reached if the best static and also best dynamic
settings for each region would be set.

This evaluation is performed not only for the main region (usually the whole
application), but for its nested regions too. Users can also specify an iterative
region which contains all the nested ones and which is called directly in the
main region. In this way certain iterative schemes (e.g., iterative solvers of linear
systems) are understood in detail, because every iteration (or phase) is evaluated
separately.

With this feature users have information about the best static optima just for
the main region (which serves as the best starting settings), information about
optimal settings of nested regions in an average phase, and the above-mentioned
information about optimal settings of nested regions in every individual phase.
If we wanted to process multiple regions like one, we can group them under one
role, as can be seen in Figure 2, where Projector_l and Projector_l_2 are different
regions comprising the region Projector. If multiple runs of the program are
measured, then both the average run and separate runs are evaluated.

Solver
Solve_RegCG_singular
Preconditioner
apply_prec

Fig. 2. Example of multiple regions on one role

Projector

Projector_1

F operator
apply-A

Projector_1.2

10 MERIC and RADAR generator tools

For some programs such a report could be impractically long and so the
generator offers the possibility to create a shorter version containing only the
overall summary and the average phase evaluation.

The generator also supports evaluation in multiples of the original unit used
in the measurement. Both the static and dynamic baseline for the energy con-
sumption, i.e. the constant baseline and the baseline dependent on settings, are
supported too.

Region Build,
Settings: taurusid094, 1th - average call per phase

T T T T T T

ot
o
]

= UCF [GHz]
%\ —— 1.2
= —— 14
% —— 1.6
wn 40 7 1.8
.S —— 2.0
é* —a— 22
2 gl i 2.4
< —— 2.6
8 —a— 28
>
%D 7 —— 3.0
g 20 I (1,2 GHz uncore freq., 2.50 GHz core freq.: 2.03]) i

1.2 1.4 1.6 1.8 2 2.2 24 2.6

CF [GHz]

Fig. 3. Plot example generated by the RADAR generator showing the effect of using
different CPU core and uncore frequencies from the energy consumption point of view.

Finally, the optimal settings for all regions and every measured quantity can
be exported into the separated files, which can be used as an input for the
MERIC tool, as described in Section 3.2.

All the above-mentioned settings are listed in the external configuration file,
which is set by the generator’s flag, so users can easily change several different
settings for their reports.

5 Test case

The ESPRESO library ¢ was selected to present MERIC and RADAR generator
usage. The library is a combination of Finite Element (FEM) and Boundary El-
ement (BEM) tools and TFETI/HTFETTI [5][15] domain decomposition solvers.

5 ESPRESO library website: http://espreso.itdi.cz/

MERIC and RADAR generator tools 11

The ESPRESO solver is a parallel linear solver, which includes a highly effi-
cient MPI communication layer designed for massively parallel machines with
thousands of compute nodes. The parallelization inside a node is done using

OpenMP.

ASM Linear solver
Solver init init

g
e
ol
=]
]

] o]]

HFETI
preconditioner Create Sa _

=] =

Iteration solver
make solution
Linear solver

solve

Fig. 4. Graph of significant regions in the ESPRESO library. The green boxes depict
multiply called regions in an iterative solver, the orange ones are only called once during
the application runtime.

Overall application evaluation

Default Default Best static Static Dynamic
settings values configuration Savings Savings
325.89J
Energy [J] ;QOt(};ﬁ:dS’CF 4549.13J ;22%13?8’01? I8L76] of
RAPL counters 9.5 GHz CF 94 GHz CF (4.00%) 4367.37J
(7.46 %)
12 threads, 12 threads, 0.00s 0.39s of
Runtime [s] 3.0GHz UCF, 15.90s 3.0GHz UCF, (O 00%) 15.90s
2.5 GHz CF 2.5 GHz CF ’ (2.43%)

Table 5. Table of resultant static and dynamic savings of the ESPRESO library test.
Rows respectively focus on possible savings from the energy and runtime points of

view.

12 MERIC and RADAR generator tools

The following test was performed on the IT4Innovations Salomon cluster
powered by two Intel Xeon E5-2680v3 (Haswell-EP) processors per node using a
RAPL counter with a 70 W baseline for the energy consumption measurement.
The processor is equipped with 12 cores and allows for CPU core and uncore
frequency scaling within the range of 1.2-2.5 GHz and 1.2-3.0 GHz, respectively.
We evaluated ESPRESO on a heat transfer problem with 2.7 million unknowns
using one MPI process per socket.

Table 5 shows the possible savings made by using different numbers of OpenMP
threads during the runtime, and by switching CPU core and uncore frequencies.
This table shows that it is possible to save 4% of the overall energy just by
statically setting different CPU core and uncore frequencies that can be applied
even without instrumenting the application at all. Table 6 shows the impact of
using different CPU frequencies in this test case, from the energy consumption
point of view.

Another 7.46 % of energy can be saved through dynamic switching of the
tuned parameters to apply the best configuration for each significant region.
Overall energy savings in this test case were 11.16 %. Table 7 in the appendix of
this paper contains the regions’ best settings.

s 12 14 16 1.8 20 22 24 26 28 3.0
1.2 5,764 5,725 5,698 5,783
1.4 5,519 5,350 5,238 5,220 5,208 5,219 5,357 5,432 5,513 5,639
1.6 5,226 5,029 4,902 4,840 4,829 4,819 4,890 4,986 5,093 5,185

1.8 5,080 4,897 4,859 4,956

2 5,054 4,852
2.2
2.4
2.5 5211 4,858

Table 6. An ESPRESO library energy consumption heat-map showing the impact of
different CPU core and uncore frequencies when using 12 OpenMP threads.

6 Conclusion

The paper presented two tools that allow easy analysis of HPC applications’
behavior, with the goal to tune hardware and runtime parameters to minimize
the given objective (e.g., the energy consumption and runtime).

Resource consumption measurement and dynamic parameter changes are
provided by the MERIC library. The currently supported parameters that can
be switched dynamically include the CPU core and uncore frequencies, as well
as the number of active OpenMP threads.

The RADAR generator analyses the MERIC measurement outputs and pro-
vides detailed TEX reports describing the behavior of the instrumented regions.

MERIC and RADAR generator tools 13

These reports also contain information about the settings that should be applied
for each region to reach maximum savings. The RADAR generator produces the
MERIC configuration files that should be used for production runs of the user
application to apply the best settings dynamically during the runtime.

Possible savings that can be reached when using MERIC and the RADAR
generator are presented in [21], where we show that the energy savings can reach
up to 10-30 %.

Acknowledgement

This work was supported by The Ministry of Education, Youth and Sports from
the National Programme of Sustainability (NPU II) project ”IT4Innovations ex-
cellence in science - LQ1602” and by the IT4Innovations infrastructure which is
supported from the Large Infrastructures for Research, Experimental Develop-
ment and Innovations project ”IT4Innovations National Supercomputing Center
LM2015070”.

The research leading to these results has received funding from the European
Union’s Horizon 2020 Programme under grant agreement number 671657.

The work was additionally supported by VSB — Technical University of Ostrava
under the grant SP2017/165 and by the Barcelona Supercomputing Center under
the grants 288777, 610402 and 671697.

References

1. Allinea MAP - C/C++ profiler and Fortran profiler for high performance Linux
code, https://www.allinea.com/products/map

2. High definition energy efficiency monitoring, http://www.ena-hpc.org/2014/pdf/
bull.pdf

3. Brodowski, D.: Linux CPUFreq, https://www.kernel.org/doc/Documentation/
cpu-freq/index.txt

4. BSC: Power monitoring on mini-clusters, https://wiki.hca.bsc.es/dokuwiki/
wiki:prototype:power_monitor#jetson-txl1

5. Dostal, Z., Horak, D., Kucera, R.: Total FETI-an easier implementable variant
of the FETI method for numerical solution of elliptic PDE. Communications in
Numerical Methods in Engineering 22(12), 1155-1162 (jun 2006), http://dx.doi.
org/10.1002/cnm.881

6. Eastep, J., Sylvester, S., Cantalupo, C., Geltz, B., Ardanaz, F., Al-Rawi, A., Liv-
ingston, K., Keceli, F., Maiterth, M., Jana, S.: Global extensible open power man-
ager: A vehicle for hpc community collaboration on co-designed energy manage-
ment solutions. In: ISC (2017)

7. eLinux.org: Jetson/TX1 controlling performance, http://elinux.org/Jetson/
TX1_Controlling_Performance

8. Hackenberg, D., Ilsche, T., Schuchart, J., Schone, R., Nagel, W., Simon, M., Geor-
giou, Y.: Hdeem: High definition energy efficiency monitoring. In: Energy Efficient
Supercomputing Workshop (E2SC) (Nov 2014)

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

MERIC and RADAR generator tools

Hackenberg, D., Schone, R., Ilsche, T., Molka, D., Schuchart, J., Geyer, R.: An
energy efficiency feature survey of the Intel Haswell processor. In: Parallel and Dis-
tributed Processing Symposium Workshop (IPDPSW), 2015 IEEE International
(May 2015)

Hahnel, M., Dobel, B., Volp, M., Hartig, H.: Measuring energy consumption for
short code paths using rapl. SIGMETRICS Perform. Eval. Rev. 40(3), 13-17 (Jan
2012), http://doi.acm.org/10.1145/2425248.2425252

Haidar, A., Jagode, H., Vaccaro, P., YarKhan, A., Tomov, S., Dongarra, J.: Inves-
tigating power capping toward energyefficient scientific applications. Concurrency
and Computation: Practice and Experience 0(0), e4485, https://onlinelibrary.
wiley.com/doi/abs/10.1002/cpe.4485

NVIDIA: NVIDIA Jetson, http://www.nvidia.com/object/
embedded-systems-dev-kits-modules.html

Oleynik, Y., Gerndt, M., Schuchart, J., Kjeldsberg, P.G., Nagel, W.E.: Run-
time exploitation of application dynamism for energy-efficient exascale comput-
ing (READEX). In: Plessl, C., El Baz, D., Cong, G., Cardoso, J.M.P., Veiga, L.,
Rauber, T. (eds.) Computational Science and Engineering (CSE), 2015 IEEE 18th
International Conference on. pp. 347-350. IEEE, Piscataway (Oct 2015)

Rajovic, N., Rico, A., Mantovani, F., Ruiz, D., Vilarrubi, J.O., Gomez, C., Backes,
L., Nieto, D., Servat, H., Martorell, X., Labarta, J., Ayguade, E., Adeniyi-Jones,
C., Derradji, S., Gloaguen, H., Lanucara, P., Sanna, N., Mehaut, J.F., Pouget,
K., Videau, B., Boyer, E., Allalen, M., Auweter, A., Brayford, D., Tafani, D.,
Weinberg, V., Brommel, D., Halver, R., Meinke, J.H., Beivide, R., Benito, M.,
Vallejo, E., Valero, M., Ramirez, A.: The Mont-blanc prototype: An alternative
approach for HPC systems. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. pp. 38:1-38:12.
SC ’16, IEEE Press, Piscataway, NJ, USA (2016), http://dl.acm.org/citation.
cfm?id=3014904.3014955

Riha, L., Brzobohaty, T., Markopoulos, A., Jarosova, M., Kozubek, T., Horak,
D., Hapla, V.: Implementation of the efficient communication layer for the highly
parallel total feti and hybrid total feti solvers. Parallel Computing (2016)
Rountree, B., Lowenthal, D.K., de Supinski, B.R., Schulz, M., Freeh, V.W., Bletsch,
T.K.: Adagio: making dvs practical for complex hpc applications. In: ICS (2009)
Schoene, R.: x86_adapt, https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/
Compendium/X86Adapt 3
Schuchart, J., Gerndt, M., Kjeldsberg, P.G., Lysaght, M., Hordk, D., Riha, L.,
Gocht, A., Sourouri, M., Kumaraswamy, M., Chowdhury, A., Jahre, M., Di-
ethelm, K., Bouizi, O., Mian, U.S., Kruzik, J., Sojka, R., Beseda, M., Kan-
nan, V., Bendifallah, Z., Hackenberg, D., Nagel, W.E.: The READEX formal-
ism for automatic tuning for energy efficiency. Computing pp. 1-19 (2017), http:
//dx.doi.org/10.1007/s00607-016-0532-7

Venkatesh, K., Lubomir, R., Michael, G., Anamika, C., Ondrej, V., Martin, B.,
David, H., Radim, S., Jakub, K., Michael, L.: Prace whitepaper: Investigating and
exploiting application dynamism for energy-efficient exascale computing (2017),
WWW.prace-ri.eu

VI-HPS: Score-p user manual 3.1 (2017)

Vysocky, O., Beseda, M., Riha, L., Zapletal, J., Nikl, V., Lysaght, M., Kannan, V.:
Evaluation of the hpc applications dynamic behavior in terms of energy consump-
tion. In: Proceedings of the Fifth International Conference on Parallel, Distributed,
Grid and Cloud Computing for Engineering. Civil-Comp Press, Stirlingshire, UK,
Paper 3 (2017)

MERIC and RADAR generator tools 15

22. Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65-76 (Apr 2009),
http://doi.acm.org/10.1145/1498765.1498785

Appendix

Significant regions energy summary and its best dynamic configuration

Region % of 1 phase Best dynar.nlc Dynfi mie
configuration savings
12 threads, 6.51J

Assemble Stiffness Ma-

trices 16.77 2.0 GHz UCF, from 685.54 J
2.4GHz CF (0.95%)
12 threads, 0.10J
ggsembler*Assemble' 0.2 2.0 GHz UCF, from 8.07J
2.5GHz CF (1.24%)
12 threads, 6.61J
gisembler*Assemble' 4.12 2.0 GHz UCF, from 168.36J
2.5GHz CF (3.93%)
2 threads, 47.64J
Assembler-K Regular- 5.00 2.2 GHz UCF, from 204.24 J
zation 2.5GHz CF (23.32%)
Assembler— 2 threads, 77.70J
PrepareMesh 12.66 1.8 GHz UCF, from 517.68 J
2.5GHz CF (15.01%)
Assembler 2 threads, 39.80J
SaveMeshtoVTK 6.89 1.2 GHz UCF, from 281.63J
2.5GHz CF (14.13%)
2 threads, 24.67J
Assembler—SaveResults 3.38 1.2 GHz UCF, from 138.34J
2.5GHz CF (17.83%)
12 threads, 114.50J
Assembler—SolverSolve 27.92 2.2 GHz UCF, from 1141.58 J
1.6 GHz CF (10.03%)
12 threads, 0.00J
ils‘;zﬁgggatem' 5.67 2.2GHz UCF, from 231.68 J
2.4GHz CF (0.00%)
12 threads, 0.64J
Cluster-CreateG1- 0.43 2.2 GHz UCF, from 17.47J
perCluster 2.0 GHz CF (3.69%)
2 threads, 2.01J
Create_GGT_Inv 0.21 2.2 GHz UCF, from 8.56 J
2.5GHz CF (23.46%)

16 MERIC and RADAR generator tools

12 threads, 0.21J
g;g:‘;egfcreatem' 2.8 GHz UCF, from 3.26 J
2.5GHz CF (6.36%)
12 threads, 0.00J
Cluster—Kfactorization 2.2 GHz UCF, from 591.46 J
2.4GHz CF (0.00%)
6 threads, 2.31J
g;‘;it;i;ifiﬁ,fa 2.8 GHz UCF, from 20.70J
2.5 GHz CF (11.30%)
6 threads, 3.02J
gi;lvszggvcégatesa' 2.8 GHz UCF, from 35.20.J
2.5GHz CF (8.58%)
12 threads, 0.18J
Cluster—SetClusterPC 2.4 GHz UCF, from 34.95J
2.4GHz CF (0.52%)

Table 7: Table of the regions analysis from the energy point of
view for the test case presented in the Section 5. For every region,
this table contains the percentage of energy the region consumed
compared to the entire application, and each regions’ best configu-
ration and energy savings if the configuration were applied during
the application runtime in its the best static configuration.

