Skip to main content

Relating Computed and Exact Entities in Methods Based on Lanczos Tridiagonalization

  • Conference paper
  • First Online:
  • 535 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11087))

Abstract

Krylov subspace methods based on short recurrences such as CGL or MINRES represent an attractive way of solving large and sparse systems of linear algebraic equations. Loss of orthogonality in the underlying Lanczos process delays significantly their convergence in finite-precision computation, whose connection to exact computation is still not fully understood. In this paper, we exploit the idea of simultaneous comparison of finite-precision and exact computations for CGL and MINRES, by taking advantage of their relationship valid also in finite-precision arithmetic. In particular, we show that finite-precision CGL residuals and Lanczos vectors have to be aggregated over the intermediate iterations to form a counterpart to vectors from the exact computation. Influence of stagnation in exact MINRES computation is also discussed. Obtained results are supported by numerical experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We only assume positive-definite matrices, so that the CGL iterations are well-defined in each step, although MINRES is well-defined also for indefinite matrices.

  2. 2.

    The length of the subsequence, i.e., the index m, is typically determined by the iteration in which the finite-precision computation reaches the maximum attainable accuracy; see [12, Sect. 5.9.3].

  3. 3.

    In such a case, approach (24) tends to construct subsequences for which \(k_l = k_{l-1}\) may hold for some l.

References

  1. Carpraux, J.F., Godunov, S.K., Kuznetsov, S.V.: Condition number of the Krylov bases and subspaces. Linear Algebra Appl. 248, 137–160 (1996)

    Article  MathSciNet  Google Scholar 

  2. Cullum, J., Greenbaum, A.: Relations between Galerkin and norm-minimizing iterative methods for solving linear systems. SIAM J. Matrix Anal. Appl. 17(2), 223–247 (1996)

    Article  MathSciNet  Google Scholar 

  3. Duff, I.S., Grimes, R.G., Lewis, J.G.: Users’ guide for the Harwell-Boeing sparse matrix collection (1992)

    Google Scholar 

  4. Fong, D.C.L., Saunders, M.A.: CG versus MINRES: an empirical comparison. SQU J. Sci. 17(1), 44–62 (2012)

    Article  Google Scholar 

  5. Gergelits, T.: Analysis of Krylov subspace methods. Master’s thesis, Charles University in Prague (2013)

    Google Scholar 

  6. Greenbaum, A.: Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences. Linear Algebra Appl. 113, 7–63 (1989)

    Article  MathSciNet  Google Scholar 

  7. Greenbaum, A., Strakoš, Z.: Predicting the behavior of finite precision Lanczos and conjugate gradient computations. SIAM J. Matrix Anal. Appl. 13(1), 121–137 (1992)

    Article  MathSciNet  Google Scholar 

  8. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. Society for Industrial and Applied Mathematics (1998)

    Google Scholar 

  9. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952)

    Article  MathSciNet  Google Scholar 

  10. Kuznetsov, S.V.: Perturbation bounds of the Krylov bases and associated Hessenberg forms. Linear Algebra Appl. 265, 1–28 (1997)

    Article  MathSciNet  Google Scholar 

  11. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bureau Stand. 45, 255–282 (1950)

    Article  MathSciNet  Google Scholar 

  12. Liesen, J., Strakoš, Z.: Krylov Subspace Methods: Principles and Analysis. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  13. Meurant, G., Strakoš, Z.: The Lanczos and conjugate gradient algorithms in finite precision arithmetic. Acta Numerica 15, 471–542 (2006)

    Article  MathSciNet  Google Scholar 

  14. O’Leary, D.P., Strakoš, Z., Tichý, P.: On sensitivity of Gauss-Christoffel quadrature. Numer. Math. 107(1), 147–174 (2007)

    Article  MathSciNet  Google Scholar 

  15. Paige, C.C.: The computation of eigenvalues and eigenvectors of very large sparse matrices. Ph.D. thesis, London University (1971)

    Google Scholar 

  16. Paige, C.C.: Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem. Linear Algebra Appl. 34, 235–258 (1980)

    Article  MathSciNet  Google Scholar 

  17. Paige, C.C., Saunders, M.A.: Solutions of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975)

    Article  MathSciNet  Google Scholar 

  18. Paige, C.C.: Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix. IMA J. Appl. Math. 18(3), 341–349 (1976)

    Article  MathSciNet  Google Scholar 

  19. Paige, C.C.: An augmented stability result for the Lanczos Hermitian matrix tridiagonalization process. SIAM J. Matrix Anal. Appl. 31(5), 2347–2359 (2010)

    Article  MathSciNet  Google Scholar 

  20. Paige, C.C., Van Dooren, P.: Sensitivity analysis of the Lanczos reduction. Numer. Linear Algebra Appl. 6(1), 29–50 (1999)

    Article  MathSciNet  Google Scholar 

  21. Parlett, B.N., Scott, D.S.: The Lanczos algorithm with selective orthogonalization. Math. Comput. 33(145), 217–238 (1979)

    Article  MathSciNet  Google Scholar 

  22. Simon, H.D.: Analysis of the symmetric Lanczos algorithm with reorthogonalization methods. Linear Algebra Appl. 61, 101–131 (1984)

    Article  MathSciNet  Google Scholar 

  23. Strakoš, Z.: On the real convergence rate of the conjugate gradient method. Linear Algebra Appl. 154–156, 535–549 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

Research supported by the Grant Agency of Charles University (GAUK 196216) and by the Grant Agency of the Czech Republic (17-04150J).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Kubínová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gergelits, T., Hnětynková, I., Kubínová, M. (2018). Relating Computed and Exact Entities in Methods Based on Lanczos Tridiagonalization. In: Kozubek, T., et al. High Performance Computing in Science and Engineering. HPCSE 2017. Lecture Notes in Computer Science(), vol 11087. Springer, Cham. https://doi.org/10.1007/978-3-319-97136-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97136-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97135-3

  • Online ISBN: 978-3-319-97136-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics