Skip to main content

Matching Attention Network for Domain Adaptation Optimized by Joint GANs and KL-MMD

  • Conference paper
  • First Online:
PRICAI 2018: Trends in Artificial Intelligence (PRICAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11012))

Included in the following conference series:

  • 3311 Accesses

Abstract

Although deep neural networks have brought impressive advances in a variety of machine learning tasks, it is more difficult to train a top-performing model in the absence of the labeled data. To alleviate this issue, domain adaptation has been extensively researched, which aims to reduce the difference between the distributions of the source and target domain by imposing restrictions on features. Adversarial learning method is the most promising approach to generate data that obeys a complex distribution. However, generator model often sinks into partial or full collapse. In this paper, we transform the complex data into a simple distribution, then calculate KL divergence (KL-MMD). We combine the Matching Gate with Attention Mechanism and put forward Matching Attention to learn feature vectors. Extensive experiments and analysis are conducted on three different digits datasets: MNIST, USPS, SVHN. To our knowledge, our method achieves state-of-the-art digit recognition performance on three unsupervised adaptation results.

This work is funded by the Natural Science Foundation of China (No. 61673204), State Grid Corporation of Science and Technology Projects (Funded No. SGLNXT00DKJS1700166), and the Program for Distinguished Talents of Jiangsu Province, China (No. 2013-XXRJ-018).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://yann.lecun.com/exdb/mnist/.

  2. 2.

    https://www.otexts.org/1577.

  3. 3.

    http://ufldl.stanford.edu/housenumbers/.

References

  1. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, p. 7 (2017)

    Google Scholar 

  2. Chen, L., et al.: SCA-CNN: spatial and channel-wise attention in convolutional networks for image captioning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6298–6306 (2017)

    Google Scholar 

  3. Ganin, Y.: Unsupervised domain adaptation by backpropagation. In: International Conference on International Conference on Machine Learning, pp. 1180–1189 (2015)

    Google Scholar 

  4. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(59), 1–35 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Goodfellow, I.J., et al.: Generative adversarial networks. Adv. Neural Inf. Process. Syst. 3, 2672–2680 (2014)

    Google Scholar 

  6. Haeusser, P., Frerix, T., Mordvintsev, A., Cremers, D.: Associative domain adaptation. In: IEEE International Conference on Computer Vision, pp. 2784–2792 (2017)

    Google Scholar 

  7. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. arXiv preprint arXiv:1709.01507 (2017)

  8. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  9. Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: Advances in Neural Information Processing Systems, pp. 469–477 (2016)

    Google Scholar 

  10. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105 (2015)

    Google Scholar 

  11. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. arXiv preprint arXiv:1605.06636 (2016)

  12. Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: National Conference on Artificial Intelligence, pp. 2058–2065 (2016)

    Google Scholar 

  13. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  14. Sun, Y., Zheng, L., Deng, W., Wang, S.: SVDNet for pedestrian retrieval. In: IEEE International Conference on Computer Vision, pp. 3820–3828 (2017)

    Google Scholar 

  15. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4068–4076. IEEE (2015)

    Google Scholar 

  16. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2962–2971 (2017)

    Google Scholar 

  17. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. In: Computer Vision and Pattern Recognition, arXiv (2014)

    Google Scholar 

  18. Varior, R.R., Haloi, M., Wang, G.: Gated Siamese convolutional neural network architecture for human re-identification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 791–808. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_48

    Chapter  Google Scholar 

  19. Wang, F., et al.: Residual attention network for image classification. In: Computer Vision and Pattern Recognition, pp. 6450–6458 (2017)

    Google Scholar 

  20. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992). https://doi.org/10.1007/BF00992696

    Article  MATH  Google Scholar 

  21. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: Computer Science, pp. 2048–2057 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-Zhu Gan or Yu-Bin Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gan, YZ., Wang, HQ., Liu, LF., Yang, YB. (2018). Matching Attention Network for Domain Adaptation Optimized by Joint GANs and KL-MMD. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11012. Springer, Cham. https://doi.org/10.1007/978-3-319-97304-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97304-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97303-6

  • Online ISBN: 978-3-319-97304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics