Skip to main content

Selecting Optimal Source for Transfer Learning in Bayesian Optimisation

  • Conference paper
  • First Online:
Book cover PRICAI 2018: Trends in Artificial Intelligence (PRICAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11012))

Included in the following conference series:

Abstract

Bayesian optimisation offers an efficient solution to optimise black box functions. When coupled with transfer learning methods, Bayesian optimisation can leverage data from other function optimisations. A crucial requirement of transfer learning, however, is to restrict the transfer of knowledge only from related functions. Since the relatedness is not known a priori, selection of useful sources is an important problem. To address this problem, we propose a new method for optimal source selection for transfer learning in Bayesian optimisation. Using multi-armed bandits for source selection, we construct a new technique for identifying the optimal source and then use it for transfer learning in Bayesian optimisation. We show theoretically that the proposed technique is guaranteed to select the most related source and thus helps to improve the optimisation efficiency. We demonstrate the effectiveness of our method for several tasks: synthetic function optimisation, the hyperparameter tuning of support vector machines, and optimisation of short polymer fiber synthesis in an industrial environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Know. Data Eng. 22, 1345–1359 (2010)

    Article  Google Scholar 

  2. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)

  3. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  4. Garnett, R., Osborne, M.A., Roberts, S.J.: Bayesian optimization for sensor set selection. In: Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, pp. 209–219. ACM (2010)

    Google Scholar 

  5. Lizotte, D.J., Wang, T., Bowling, M.H., Schuurmans, D.: Automatic gait optimization with Gaussian process regression. In: IJCAI, vol. 7, pp. 944–949 (2007)

    Google Scholar 

  6. Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperparameter tuning. In: ICML, vol. 2, pp. 199–207 (2013)

    Google Scholar 

  7. Yogatama, D., Mann, G.: Efficient transfer learning method for automatic hyperparameter tuning. Transfer 1, 1 (2014)

    Google Scholar 

  8. Swersky, K., Snoek, J., Adams, R.P.: Multi-task Bayesian optimization. In: Advances in neural information processing systems, pp. 2004–2012 (2013)

    Google Scholar 

  9. Joy, T.T., Rana, S., Gupta, S.K., Venkatesh, S.: Flexible transfer learning framework for Bayesian optimisation. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9651, pp. 102–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31753-3_9

    Chapter  Google Scholar 

  10. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML 2003. LNCS (LNAI), vol. 3176, pp. 63–71. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_4

    Chapter  Google Scholar 

  11. Snoek, J., et al.: Scalable Bayesian optimization using deep neural networks. In: International Conference on Machine Learning, pp. 2171–2180 (2015)

    Google Scholar 

  12. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016)

    Article  Google Scholar 

  13. Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Basic Eng. 86, 97–106 (1964)

    Article  Google Scholar 

  14. Moc̃kus, J., Tiesis, V., Z̃ilinskas, A.: The application of Bayesian methods for seeking the extremum. In: Toward Global Optimization, vol. 2, pp. 117–128. Elsevier (1978)

    Google Scholar 

  15. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Trans. Inf. Theory 58, 3250–3265 (2012)

    Article  MathSciNet  Google Scholar 

  16. Robbins, H.: Some aspects of the sequential design of experiments. Bull. Am. Math. Soc. 58(5), 527–535 (1952). https://projecteuclid.org/euclid.bams/1183517370

    Article  MathSciNet  Google Scholar 

  17. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem. SIAM J. Comput. 32, 48–77 (2002)

    Article  MathSciNet  Google Scholar 

  18. Shilton, A., Gupta, S., Rana, S., Venkatesh, S.: Regret bounds for transfer learning in Bayesian optimisation. In: Artificial Intelligence and Statistics, pp. 307–315 (2017)

    Google Scholar 

  19. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)

    Article  MathSciNet  Google Scholar 

  20. Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

  21. Sutti, A., Lin, T., Wang, X.: Shear-enhanced solution precipitation: a simple process to produce short polymeric nanofibers. J. Nanosci. Nanotechnol. 11, 8947–8952 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

This research was partially funded by the Australian Government through the Australian Research Council (ARC) and the Telstra-Deakin Centre of Excellence in Big Data and Machine Learning. Professor Venkatesh is the recipient of an ARC Australian Laureate Fellowship (FL170100006). The authors thank Dr Alessandra Sutti and her team for providing short polymer fiber data and several useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Ramachandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramachandran, A., Gupta, S., Rana, S., Venkatesh, S. (2018). Selecting Optimal Source for Transfer Learning in Bayesian Optimisation. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11012. Springer, Cham. https://doi.org/10.1007/978-3-319-97304-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97304-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97303-6

  • Online ISBN: 978-3-319-97304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics