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Abstract. Visual object tracking is a popular but challenging problem
in computer vision. The main challenge is the lack of priori knowledge
of the tracking target, which may be only supervised of a bounding box
given in the first frame. Besides, the tracking suffers from many influ-
ences as scale variations, deformations, partial occlusions and motion
blur, etc.. To solve such a challenging problem, a suitable tracking frame-
work is demanded to adopt different tracking scenes. This paper presents
a novel approach for robust visual object tracking by multiple features
fusion in the Siamese Network. Hand-crafted appearance features and
CNN features are combined to mutually compensate for their shortages
and enhance the advantages. The proposed network is processed as fol-
lows. Firstly, different features are extracted from the tracking frames.
Secondly, the extracted features are employed via Correlation Filter re-
spectively to learn corresponding templates, which are used to generate
response maps respectively. And finally, the multiple response maps are
fused to get a better response map, which can help to locate the tar-
get location more accurately. Comprehensive experiments are conducted
on three benchmarks: Temple-Color, OTB50 and UAV123. Experimental
results demonstrate that the proposed approach achieves state-of-the-art
performance on these benchmarks.

Keywords: Deep Learning - Siamese Network - Object Tracking - Fea-
ture Fusion

1 Introduction

Visual object tracking is one of the hotspots in computer vision. Object tracking
is widely employed in many real-world visual applications, such as autonomous
driving, video surveillance, human-computer interaction, etc.. The task of object
tracking is estimating the trajectory of an object in an image sequence. However,
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the only knowledge about the object is that the target location in the first
frame. The lack of priori knowledge makes the task challenging. Besides, the
problem is challenged from many influences such as illumination variations, scale
variations, non-rigid deformations, fast motion, background clutters, motion blur
and occlusions.

In recent years, correlation filter based methods have shown excellent per-
formance on object tracking benchmarks [30]. However, most of these methods
only use hand-crafted appearance features to present the tracking target, which
cannot get satisfactory performance in some scene applications like occlusions
[6,7,31], background clutters [2,19,31], etc.. In the process of object tracking,
most of the existing adaptive model based approaches which update the model
continuously through the tracking process can achieve better performance [2,
6,11,24]. The target information in later frames can make the adaptive model
become more accurate. However, in the other side, the model may be updated
with some negative information such as target losing. With the accumulation of
these small negative errors, the performance of the model become worse. Finally,
these small errors may lead to model drift and target lost.

SAMF

Fig. 1. A qualitative comparison of our approach with other three state-of-the-art
approaches on three example sequences. It is shown the three sequences results: Motor
Rolling (top row), Soccer (middle row) and skating2 (bottom row). These example
sequences include these cases: scale variation, occlusion, deformation, fast motion, out-
of-plane rotation, in-plane rotation and background clutters. Our approach achieves
superior results in these scenarios.

Deep neural networks can train powerful models with large numbers of la-
beled training samples. When enough priori knowledge of the target is obtained,
the deep neural networks can achieve excellent performance in many application
scenes. However, the lack of priori knowledge about the target is the main chal-
lenge for training deep neural networks in object tracking task. Moreover, the
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training of deep neural networks is time consuming for real time on-line training
and tracking.

A possible way to solve the above problems is to train the deep neural net-
works model offline. Some existing works adapt a pre-trained model for the tar-
get to get CNN (Convolutional Neural Network) features [8, 10, 22]. Though the
pre-trained model bypass the online learning problem, its fixed metric prevents
the learning strategy from exploiting the sense-specific cues which is important
for discrimination. Some approaches use Siamese CNN architecture, which is a
non-online adaptation network [3,5,14, 18, 26]. Siamese CNN is trained offline
but have excellent performance in discriminating whether or not the same ob-
ject in two image patches. According to some research works, combining on-line
learning method with pre-trained CNN features has obtained successful improve-
ment. For example, with deep integration of CNN and correlation filter, some
investigators take the correlation filter as a network layer [27].

However, it is difficult to achieve satisfactory tracking results with single
feature for both on-line and off-line learning strategy. Each feature has its own
disadvantages. To overcome the shortcoming, combining different features is a
good way to apply in the object tracking task. For example, HOG (Histogram of
Orientation Gradient) presents the oriented gradients histograms for an image
and it is also a general feature which has employed in many state-of-the-art
methods [2,6,7,16]. Those trackers achieve excellent performance in scenarios
with little deformation and occlusions. But the HOG features based method has
its drawbacks, for example, it is sensitive to large deformation. The trackers
perform poorly when the object change rapidly. However, the CNN features are
powerful in image representations, it is not sensitive to deformation. It turns
out that as long as there are enough diverse training samples, the CNN features
can achieve excellent performance even in scenarios with large object variations
and background clutters. The one shortcoming is that if the training samples
are not enough and lacking some kinds of scenes, the performance of CNN will
drop very fast.

A key issue in general object tracking is designing general object descriptors
to describe object discriminatively with any class. In this paper, we propose a
Siamese Network framework that combines the CNN features with hand-crafted
appearance feature for adaptive robust object tracking and achieve excellent per-
formance (see figure 1). The features fused in this paper are CNNs and HOGs.
Moreover, our network can not only fuse CNN and HOG features, but also inte-
grate CNN features with more features. In the network, we apply the Correlation
Filter to generate a discriminative template for CNN and HOG features respec-
tively, which can be used to get CNN and HOG response maps. Thousands of
parameters have been trained through the Siamese Network framework to im-
prove the CNN and HOG features fusion results. The improvement is beneficial
to the tracking performance. The architecture of our network is shown in Figure
2. In general, the network architecture we proposed can be divided into three
parts. The feature extraction layer are utilized to extract different features from
the training samples and testing samples. The training image is an image patch
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of the previous frame that contains the tracking target. The test image is the
current frame to be searched of. The template generation layer utilize the fea-
tures extracted from the traing image to generate the corresponding template.
The corresponding response maps can be obtained by the convolution of the fea-
ture maps and the discriminative templates. And finally, the multiple response
maps are fused by fusion layer to generate the final response. The final response
map help to locate the target location more accurately. Experimental results
show that our approach is a robust general tracker, and achieves state-of-the-art
performance on multiple benchmarks. Code is avaliable online?.

Feature Extraction Layer Template Generation Layer

P —

CNN Template

s ias

HOG Feature Map HOG Template HOG Response Map

Fusion Layer

HOG Feature Map

Test Image H CNN ﬂ

CNN Feature Map

—

Final Response Map

CNN Response Map

Fig. 2. The architecture of our proposed network.

2 Related Work

The mainstream object tracking methods can be divided into two categories —
generative [1,21,25] or discriminative [13, 15, 32] approaches. Generative model
approaches use the statistical models or templates to describe the object. The
generative model approaches consist of Kalman filtering, Particle filter, mean-
shift and so on. Discriminative model approaches use the machine learning to
train classifier by taking the object as the positive samples and the background
as the negative samples. And then, use the classifier to find the optimal region of
target frame by frame. The Support Vector Machine (SVM) is a classical machine
learning algorithm used in discriminative model approaches. Many approaches
like Struck tracker [13] employ haar features and structured SVM to achieve the
tracking task.

The Discriminative Correlation Filters (CF) is an outstanding method of
discriminative model approaches. In recent years, these trackers have been em-
ployed in the CF and achieved excellent performance on tracking bechmarks.

* https://github.com/needniming/SNBFF
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The MOOSE tracker [4] is the work of Bolme et al. which is the first tracker
that used the CF. These trackers like CSK [15] and MOOSE use the raw pix-
els combined with CF to estimae the trajectory of an object. However, these
methods could not take advantage of image features, and tracking performance
is extremely limited. With the help of HOG features, KCF/DCF [16] improve
the tracking results. But the HOG is sensitive to deformation while the tracker
CN [11] demonstrates that the color feature is robustness to deformation. In
any case, it is difficult to achieve satisfactory tracking results with single fea-
ture. With the development of deep learning, the method based on deep learning
is developing rapidly in the visual object tracking. Recent works have focused
on learning universal object descriptors to achieve tracking task. These meth-
ods [3, 5,14, 18,26, 27] are based on the Siamese CNN architecture. The network
is trained offline, so it can take advantage of information present in numerous
training images. The GOTURN tracker [14] based on this architecture can run
100FPS in GPU mode. However, the performance of this method is not satis-
factory. End-to-end representation learning method SiameseFC [3] and CFNet
[27] get excellent performance in aspects of speed and results. The network we
designed combines different features to improve the generality of the tracker,
and achieves state-of-the-art performance on multiple benchmarks.

The method of combining multiple estimates can improve tracking results.
The Staple [2] tracker combines HOG and color histogram together to make up
for the defect of the two features, so it can make the tracker robust to defor-
mation. The tracker in [28] use a factorial HMM to combine the results of five
independent trackers. The MEEM [31] tracker stores a collection of past models.
For each frame, the tracker can obtain an evaluation result equal to the number
of storage models. Using the loss entropy function, an optimal one is selected
from these results. Our approach differs from these approaches in that a) our ap-
proach based on a deep neural network architecture is a end-to-end method. b)
A deep intergation of different features are achieved in our network by training
correlation weights, and these features can describe the object more elaborate.
¢) We add a fusion layer in the network to fuse differrnt response maps. The
output of the fusion layer can help to locate the target more accurate.

3 The Proposed Approach

We briefly introduce our proposed network framework in section 3.1. And then,
the usage of the Correlation Filter to generate CNN and HOG template is ex-
plained in section 3.2 and the fusion approach is presented in section 3.3. In the
last, we illustrate the use of the fusion model for object tracking in section 3.4.

3.1 Siamese Network framework

The starting point of this paper is to design a network to combine different
features more compact. The CFNet [27] uses the CNN features for visual ob-
ject tracking and get state-of-the-art performance in the OTB benchmarks [29,



6 D. Guo et al.

30]. However, using the CNN features should face a key problem, if the train-
ing samples are not enough and lack some scenes, the CNN features may not
achieve satisfactory tracking results in some scenes which are not contained in
the training samples. We find that combining the CNN with HOG can improve
the universal property of the tracker.

The network we proposed is used to fuse the response map of features. The
input of the network is pairs of image patches (2’, y'). The image 2’ represents
the object of interest in the x;, frame of an image sequence and the object is in
the middle of the image z’. Moreover, the image vy’ represents the object search
area in the x + 1y, frame of an image sequence and the size of ¢’ is larger than
z'. The y' is extracted from z + 14, frame based on the object location in the
xyp, frame.

HOG and CNN features are extracted from the two inputs respectively. Here
we utilize the fuction f. and f;, to extract CNN and HOG features from an image
respectively. The parameters used in feature extraction function f are trained
by our proposed network. A pair of image patches can yield four feature maps
(two CNN feature maps f.(z'), fc(y') and two HOG feature maps f ('), fn(vy'))
which can get two response maps after cross-correlated operation:

gc(x/’ y/) = fc(x/) * fC(yl) (1)

gn(@'y") = fu(@") * fu(y) 2)

Eq. 1 gets the CNN feature response map while eq. 2 gets the HOG feature
response map. In order to get a better response map, it is necessary to fuse the
CNN response map and HOG response map.

g(xlvy/) = Mp(gmgh) (3)

Here, the maximum value of the response map g(2’,y’) is related to the center of
the target. The function M is used to represent the fusion approach and the p is
the learnable parameters. More details about the function M will be explained
in section 3.3.

To obtain the model, the network is trained offline. The training image sam-
ples of the network are millions of random pair (2, y;). Each image pair has
a spatial map of label information which is composed of {—1,1}. The label is
represented whether the pixel point is belonging to the ground truth or not.

(4)

—1, not belong to ground truth
Li(r,c) =
1, belong to ground truth
Here, r and ¢ represent the row number and col number of the spatial map.
The purpose of the network training is minimizing the element-wise logistic loss
function ¢:

arg minng(w/,y/),Li) (5)
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3.2 Correlation Filter

The Correlation Filter is an algorithm to train a liner template for discriminating
the relationship of image and image transformation. The problem of solving the
correlation filter template is equivalent to solving the ridge regression problem.
In the following, the correlation filter template is denoted as w, & € Rm*m*xK
is a K-channel feature image, y € R™*™ is the desired response map. In our
network, the CNN and HOG feature maps of training image z’ are all belong
to feature image z. Under a least-squares Correlation Filter formulation, the
problem can be represented as:

argmin |Jw x z — y|? (6)
w

where symbol * denotes the circular cross-corrleation. To avoid overfitting, we
should add the quadratic regularization into eq. 6 and get:

arg min [|w* z — y|* + |w|® (7)
w

To solve the problem, and obtain the optimal template w, we set and expand
F(w)

F(w) = w*z —y* + Mw]?

=(wrz—y)T(wrz—y)+ wlw

The optimal template w can then obtained by solving the equation d Fww =
0

- Yy
w—7$*$+)\*x 9)

It is time-consuming to solve eq. 9 in time domain. To avoid the problem, we
can make fast Fourier transform for eq. 9,

YT Grod) 1A

(10)
where w represents the value of w in the frequency domain, the x* denotes
conjugation and the symbol o denotes the element-wise multiplication. And in-
troducing inverse fast Fourier transform w can get the optimal template w.

3.3 Feature Fusion

In section 3.1, we briefly introduce our proposed network framework, the feature
extraction layer of the network can extract features from pairs of image patches
(', y'). These features can obtain two response maps by correlation filter oper-
ation. In order to make better use of these response maps, set different weights,
and fuse these together to obtain a new response map. The fusion approach can
make full use of the advantages of the two features and make up for the defi-
ciency between the two features, therefore the tracking performance could be
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improved. In section 3.2, the feature templates are obtained through correlation
filter, therefore eq. 1 and eq. 2 can be represented as:

ge(@",y') = w(fe(z")) * fe(y') (11)
gn(@',y) = w(fn(x") * fu(y') (12)

where the function w(x) is represented to get the optimal template w. The fusion
approach can use the eq. 13 to represent,

D
m(@',y') = ga(x',y') * ka (13)
d=1

where D is the amount of features, ky is the fusion kernal which trained by our
network.

In the last, in order to make the response map more suitable for logistic re-
gression, the scale and bias are added into m(z’,y’) to get the function M (z',y’),

M(a',y') = sm(a',y) + b (14)

In order to make the fusion result become better, all the parameters are
trained through the network .

3.4 Visual Object Tracking Algorithm

The network needs a pair of image patches as input. The input of the model
consists of the target region in the previous frame and the search region in the
current region. The search region is extracted as a sub-window centred at the
previously estimated position which size is four times of the object. The output
of the model is the fusion response map. The maximum value of the response is
corresponding to the center of the object.

Although the model is trained offline, we find that the updating strategies
using online learning can improve the experimental results. When a pair of image
patches is inputted to the model, two new template w(f.(z’)) and w(f(z")) are
obtained. The approach fuses new feature template with old feature template is
shown in eq. 15:

Tempc,new - (]- - nc)Tempc,pre + ncw(fc(x/))v (15)
Temph,new = (1 - nh)Temph,pre + ncw(fh (Il))

where the parameter 7 represents the learning rate of the template in online
tracking.

4 Experiments

We evaluate our proposed network by performing contrast experiments on three
benchmarks: Temple-Color [20], UAV123 [23], and OTB50 [29, 30]. The funda-
mental purpose of our experiments is to evaluate the effect of using our network
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to train parameters for feature fusion during training. First, we compare the
effects of different convolutional layer depths on the tracking performance. And
then, we compare our approach with some state-of-the-art trackers on bench-
marks. Bounding box overlap ratio and center location error are two metrics to
evaluate the trackers. The bounding box overlap ratio is defined to measure the
bounding boxes overlap of ground truth Ry and the tracker’s predict result R;.

Ry N R,

S(Jover) = m > Oover
g

(16)

The center location error is defined as the bounding box center Euclidean dis-
tance between ground truth Py and the trackers predict result P;.

P(Usucc) = HPgt - Pt” < Osuce (17)

4.1 Evaluation of different convolutional layer depths

In this part, we use the bounding box overlap ratio to evaluate the trackers. The
success plot is calculated as the percentage of frames with an intersection-over-
union (IOU) overlap exceeding a threshold. The Temple-Color is the validation
dataset in this part. Since we can only get the model of CFNet [27] using Conv-
1, Conv-2 and Conv-5, our approach uses the same convolutional layers to do
comparison. The results are shown in Figure 3. In Figure 3, we can find that the
result of our approach is better than CFNet. It proves that the combination of
the CNN and HOG features improves the performance of the tracker. To show
the tracking results of HOG fused with varying convolutional layers, we choose
the results when the overlap threshold is 0.5. The results are shown in Figure
4. In Figure 4, we find that the Conv-2 can achieve better results, when more
convolutional layers are added it seems to be redundant.

Success plots of OPE Success plots of OPE Success plots of OPE
73]

~ e _conV1 0467 o con2 04 i cons [0432]
07 CFNet_convt [0:462] 07 GFNet conv20.458) o GFNet coni5[0.412)

Success rate
Success rate
Success rate

02 02 \ 0

o1 o \\\ o1 \\
0 o 0 J . N

0 02 06 08 1 0 02 08 1 0 02 08 1

0 04 05
Overlap threshold Overlap threshold

0s 0
Overlap threshold

(a) convl (b) conv2 (c) convh

Fig. 3. Success rates of rectangle overlap for different convolutional layers on the vali-
dation dataset Temple-Color.
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Fig. 4. The accuracy with different convolutional layer depths of our approach.

4.2 Comparisons with state-of-the-art methods

We compare our proposed approach with 13 state-of-the-art trackers: KCF [16],
Staple [2], SAMF [19], SiameFC [3], CFNet [27], MEEM [31], SRDCF [9], DSST
[6], DAT [24], ACT [11], TGPR [12], KCFDP [17] and fDSST [7]. Our experi-
ments are using success plot and precision plot. The comparisons are done on
the benchmarks UVA123 and OTB50, detailed as follows.

UAV123: UAV123 is a very large dataset which is captured from low-altitude
UAVs. The dataset consists of sequences from an aerial viewpoint, containing a
total of 123 video sequences and more than 110K frames. Figures 5 (a), (b) show
the results of precision and success rate respectively. Among the comparison with
the Siamese Network based approach, SiameseFC and CFNet provide the best
results with AUC scores of 47.8% and 47.6% respectively. Our approach provides
a better performance with an AUC score of 49.7%.

OTB50: 0TB2013, OTB50 and OTB100 are commonly used OTB datasets
in comparative experiments. OTB50 is the most challenging dataset of these
OTB datasets, so the experiment only compare in the OTB50. The dataset
contains 50 video sequences. Figures 5 (c), (d) show the results of precision and
success rate respectively. Figure 5 show that our approach achieves state-of-the-
art results on UAV123 and OTB50 datasets. Compared with SRDCF, employing
hand-crafted features, our approach achieve a better performance with an AUC
score of 55.1%. Compared with the deep features trackers SiameseFC and CFNet,
our approach also achieves a better performance.
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Fig. 5. Success plots on the UAV-123 (a) and OTB50 (c) datasets. Precision plots on
the UAV123 (b) and OTB50 (d) datasets. The score of each tracker is shown in the
legend. Our approach achieves state-of-the-art performance in all datasets. For clarity,
only the results of top 10 trackers are shown in the legend.

5 Conclusion

In this paper, we propose a novel approach based on Siamese Network for robust
visual object tracking. The training of the network model makes up the defect
of different features in the tracking effect. Our feature fusion network improves
the generality of the tracker, achieves excellent performance in scenes with fast
motion, motion blur, background clutters and so on. Furthermore, our approach
achieves the state-of-the-art performance on UAV123, OTB50 and Temple-Color.
It also shows that the deep network model is trained with a large amount of data
has a good application prospect in the object tracking, and the work based on
Siamese Network is worthy for further study.
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