Skip to main content

Segmenting Sound Waves to Support Phonocardiogram Analysis: The PCGseg Approach

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11013))

Abstract

The classification of Phonocardiogram (PCG) time series, which is often used to indicate the heart conditions through a high-fidelity sound recording, is an important aspect in diagnosing heart-related medical conditions, particularly on canines. Both the size of the PCG time series and the irregularities featured within them render this classification process very challenging. In classifying PCG time series, motif-based approaches are considered to be very viable approach. The central idea behind motif-based approaches is to identify reoccurring sub-sequences (which are referred to as motifs) to build a classification model. However, this approach becomes challenging with large time series where the resource requirements for adopting motif-based approaches are very intensive. This paper proposes a novel two-layer PCG segmentation technique, called as PCGseg, that reduces the overall size of the time series, thus reducing the required for generating motifs. The evaluation results are encouraging and shows that the proposed approach reduces the generation time by a factor of six, without adversely affecting classification accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bezruchko, B., Smirnov, D.: Extracting Knowledge From Time Series: An Introduction to Nonlinear Empirical Modeling. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12601-7

    Book  MATH  Google Scholar 

  2. Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 493–498. ACM (2003)

    Google Scholar 

  3. Gao, Y., Lin, J., Rangwala, H.: Iterative grammar-based framework for discovering variable-length time series motifs. In: Proceedings of the 15th IEEE International Conference on Machine Learning and Applications (ICMLA 2017), pp. 111–116. IEEE (2017)

    Google Scholar 

  4. Serra, J., Arcos, J.: Cparticle swarm optimization for time series motif discovery. Knowl.-Based Syst. 92, 127–137 (2016)

    Article  Google Scholar 

  5. Torkamani, S., Lohweg, V.: Survey on time series motif discovery. Wiley Interdiscip. Rev. Data Mining Knowl. Discov. 7(2), 1–8 (2017)

    Article  Google Scholar 

  6. Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: a survey and novel approach. In: Kandel, A., Bunke, H., Last, M. (eds.) Data mining in Time Series Databases, pp. 1–22. World Scientific (2001)

    Google Scholar 

  7. Huang, G., Zhou, X.: A piecewise linear representation method of hydrological time series based on curve feature. In: Proceedings of the 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC 2016), pp. 203–207 (2016)

    Google Scholar 

  8. Anirudh, R., Turaga, P.: Geometry-based symbolic approximation for fast sequence matching on manifolds. Int. J. Comput. Vis. 116(2), 161–173 (2016)

    Article  MathSciNet  Google Scholar 

  9. Keogh, E., Chakrabarti, K., Pazzani, M.: Mehrotra: dimensionality reduction for fast similarity search in large time series databases. J. Knowl. Inf. Syst. 3(3), 263–286 (2001)

    Article  Google Scholar 

  10. Patel, A., Bullmore, E.: A wavelet-based estimator of the degrees of freedom in denoised fmri time series for probabilistic testing of functional connectivity and brain graphs. NeuroImage 142, 14–26 (2016)

    Article  Google Scholar 

  11. Zhao, H., Dong, Z., Li, T., Wang, X., Pang, C.: Segmenting time series with connected lines under maximum error bound. Inf. Sci. 345, 1–8 (2016)

    Article  Google Scholar 

  12. Zhao, H., Li, G., Zhang, H., Xue, Y.: An improved algorithm for segmenting online time series with error bound guarantee. Int. J. Mach. Learn. Cybern. 7(3), 365–374 (2016)

    Article  Google Scholar 

  13. Belevich, I., Joensuu, M., Kumar, D., Vihinen, H., Jokitalo, E.: Microscopy image browser: a platform for segmentation and analysis of multidimensional datasets. PLOS Biol. J. 14(1), 1–13 (2016)

    Google Scholar 

  14. Oliveira, J., Sousa, C., Coimbra, M.: Coupled hidden Markov model for automatic ECG and PCG segmentation. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2017), pp. 1023–1027 (2017)

    Google Scholar 

  15. Quiceno, A., Delgado, E., Vallverd, M., Matijasevic, A., Castellanos-Domnguez, G.: Effective phonocardiogram segmentation using nonlinear dynamic analysis and high-frequency decomposition. In: Proceedings of the Computers in Cardiology, pp. 161–164. IEEE (2008)

    Google Scholar 

  16. Ahlstrom, C.: NonLinear Phonocardiographic Signal Processing. Ph.D. thesis, Linkoping University, Sweden (2008)

    Google Scholar 

  17. Dokur, Z., lmez, T.: Heart sound classification using wavelet transform and incremental self-organizing map. Digit. Sig. Process. 18(6), 951–959 (2008)

    Article  Google Scholar 

  18. Gavrovska, A., Paskas, M., Dujkovic, D., Reljin, I.: Region-based phonocardiogram event segmentation in spectrogram image. In: Proceedings of the Neural Network Applications in Electrical Engineering (NEUREL 2010), pp. 69–62. IEEE (2010)

    Google Scholar 

  19. Moukadem, A., Dieterlen, A., Hueber, N., Brandt, C.: Comparative study of heart sounds localization. In: Proceedings of the Bioelectronics, Biomedical and Bio-inspired Systems, SPIE Proceedings, vol. 8068, 9 p. (2011)

    Google Scholar 

  20. Helton, W.: Canine Ergonomics: The Science of Working Dogs. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  21. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic representation of time series. Data Min. Knowl. Disc. 15(2), 107–144 (2007)

    Article  MathSciNet  Google Scholar 

  22. Sklansky, J., Gonzalez, V.: Fast polygonal approximation of digitized curves. Pattern Recogn. 12(5), 327–331 (2007)

    Article  Google Scholar 

  23. Mueen, A., Keogh, E., Zhu, Q., Cash, S., Westover, B.: Exact discovery of time series motifs. In: Proceedings of the SIAM International Conference on Data Mining, pp. 473–484 (2009)

    Chapter  Google Scholar 

  24. Nakamura, K., Kawamoto, S., Osuga, T., Morita, T., Sasaki, N., Morishita, K., Takiguchi, M.: Left atrial strain at different stages of myxomatous mitral valve disease in dogs. J. Vet. Intern. Med. 31(2), 316–325 (2017)

    Article  Google Scholar 

  25. Chen, C., Pau, L., Wang, P.: Handbook of Pattern Recognition and Computer Vision. World Scientific, River Edge (1993)

    Book  Google Scholar 

  26. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms, 2nd edn. Wiley, New York (2014)

    Book  Google Scholar 

  27. Wang, X., Fang, Z., Wang, P., Zhu, R., Wang, W.: A distributed multi-level composite index for KNN processing on long time series. In: Candan, S., Chen, L., Pedersen, T.B., Chang, L., Hua, W. (eds.) DASFAA 2017. LNCS, vol. 10177, pp. 215–230. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55753-3_14

    Chapter  Google Scholar 

  28. Stojanovic, M., Bozic, M., Stankovic, M., Stajic, Z.: A methodology for training set instance selection using mutual information in time series prediction. Neurocomputing 141, 236–245 (2014)

    Article  Google Scholar 

  29. Witten, I., Frank, E., Hall, M., Pal, C.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajar Alhijailan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alhijailan, H., Coenen, F., Dukes-McEwan, J., Thiyagalingam, J. (2018). Segmenting Sound Waves to Support Phonocardiogram Analysis: The PCGseg Approach. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11013. Springer, Cham. https://doi.org/10.1007/978-3-319-97310-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97310-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97309-8

  • Online ISBN: 978-3-319-97310-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics