arXiv:1802.08534v2 [cs.MA] 14 Apr 2018

Weighted Double Deep Multiagent Reinforcement Learning in Stochastic
Cooperative Environments

Yan Zheng', Jianye Hao', Zongzhang Zhang?,
! Tianjin University, Tianjin, China
2 Soochow University, Suzhou, China
yanzheng @tju.edu.cn, jianye.hao@tju.edu.cn, zzzhang @suda.edu.cn

Abstract

Recently, multiagent deep reinforcement learning
(DRL) has received increasingly wide attention.
Existing multiagent DRL algorithms are inefficient
when facing with the non-stationarity due to agents
update their policies simultaneously in stochastic
cooperative environments. This paper extends the
recently proposed weighted double estimator to
the multiagent domain and propose a multiagent
DRL framework, named weighted double deep Q-
network (WDDQN). By utilizing the weighted dou-
ble estimator and the deep neural network, WD-
DQN can not only reduce the bias effectively but
also be extended to scenarios with raw visual in-
puts. To achieve efficient cooperation in the mul-
tiagent domain, we introduce the lenient reward
network and the scheduled replay strategy. Ex-
periments show that the WDDQN outperforms the
existing DRL and multiaent DRL algorithms, i.e.,
double DQN and lenient Q-learning, in terms of the
average reward and the convergence rate in stochas-
tic cooperative environments.

1 Introduction

The goal of reinforcement learning (RL) is to learn an optimal
behavior within an unknown dynamic environment, usually
modeled as a Markov decision process (MDP), through trial
and error [Sutton and Barto, 1998]l. Over the past years, deep
RL (DRL) has achieved great successes. It has been prac-
tically shown to successfully master various complex prob-
lems [Mnih ef al., 2013;Mnih et al., 2015]]. To a large extent,
these successes can be credited to the incorporation of the
experience replay and target network that stabilizes the net-
work training [Mnih et al., 2016; Mnih et al., 2013} Mnih
et al., 2015; |Schaul et al., 2016; |Van Hasselt er al., 2016;
Wang et al., 2016].

Approaches like [Bloembergen er al, 2011; [Matignon
et al., 2007; Matignon et al., 2012 Panait et al., 2006
Wei and Luke, 2016] have been proposed by extending Q-
learning to address the coordination problems in cooperative
multiagent systems. They are able to achieve coordination
in relatively simple cooperative multiagent system. However,

none of them has been combined with deep learning tech-
niques.

Recently, increasing wide attention has been drawn in em-
ploying DRL in multiagent environments. Unfortunately,
these multiagent DRL algorithms still suffer from two intrin-
sic difficulties in the interactive environments [Gupta et al.,
2017 [Lanctot et al., 2017; |[Matignon e al., 2012|]: stochas-
ticity due to the noisy reward signals; and non-stationarity
due to the dynamicity of coexisting agents. The stochas-
ticity introduces additional biases in estimation, while the
non-stationarity harms the effectiveness of experience replay,
which is crucial for stabilizing deep Q-networks. These two
characteristics result in the lack of theoretical convergence
guarantees of most multiagent DRL algorithms and amplify
the difficulty of finding the optimal Nash equilibriums, espe-
cially in cooperative multiagent problems.

This work focuses on learning algorithms of independent
learners (ILs) in cooperative multiagent systems. Here, we
assume that agents are unable to observe other agents’ ac-
tions and rewards [Claus and Boutilier, 1998]|; they share a
common reward function and learn to maximize the com-
mon expected discounted reward (a.k.a. return). To handle
the stochastic and non-stationary challenges in the multiagent
systems, we propose the weighted double deep Q-network
(WDDQN) with two auxiliary mechanisms, the lenient re-
ward network and the scheduled replay strategy, to help ILs
in finding the optimal policy that maximizes the common re-
turn.

Our contributions are three-fold. First, we extend weighted
double Q-learning (WDQ) [Zhang er al., 2017], a state-of-
the-art traditional RL method, to the multiagent DRL set-
tings. Second, we introduce a lenient reward network in-
spired by the lenient Q-learning [Palmer et al., 2018} [Panait
et al., 2006]. Third, we modify the exisitin prioritized expe-
rience replay strategy to stabilize and speed up the learning
process in complex multiagent problems with raw visual in-
puts. Empirical results demonstrate that on a fully coopera-
tive multiagent problem WDDQN with the new mechanisms
indeed contribute to increasing the algorithm’s convergence,
decreasing the instability and helping ILs to find an optimal
policy simultaneously.



2 Preliminaries

This section briefly introduces the definition of cooperative
Markov games, Q-learning and its variants.

2.1 Cooperative Markov Game

Markov (stochastic) games, as an extension of repeated
games and MDPs, provide a commonly used framework for
modeling interactions among agents. They can be formalized
as a tuple < N,S,A,Tr,Ry,...Rn,y >. Here, N is the
number of players (or agents), S is the set of states, A =
A; X ... x Ay is the joint action set, where A; is the action
space of player 4, T'r is the transition function S x A x S —
[0,1] suchthat 3s € S,3a € A, >, cgTr(s,a,8) =1, R;
is the reward function S x A — R for player ¢, and v € [0, 1]
is a discount factor. The state s is assumed to be observable
for all players. A fully cooperative Markov game is a spe-
cific type of Markov games where all agents receive the same
reward under the same outcome, and thus share the same best-
interest action.

2.2 Q-learning and Its Variants

Q-learning

is based on the core idea of temporal difference (TD) learn-
ing [Sutton, 1988|] and is well suited for solving sequen-
tial decision making problems [Claus and Boutilier, 1998;
Watkins, 1989]. Q-learning tries to find an accurate estimator
of the Q-Values, i.e. Q:(s,a), for state-action pairs [Claus
and Boutilier, 1998]l. Each Q-value is an estimate of the dis-
counted sum of future rewards that can be obtained at time
t through selecting action «a in state s. The iterative update
formula is outlined in Equation [T}

Q(s.a) < Qs,a) +alr +7max Q(s',a') — Q(s, @), (1)

where r is the immediate reward and « € [0, 1) is the learn-
ing rate. The updating process always chooses the action a’
with the maximum Q value and updates Q with the saved Q
value. Once the process terminates, an optimal policy can
be obtained by selecting the action with the maximum Q-
value in each state [Bellman, 1957]. However, Q-learning
uses a single estimator to estimate E{max, Q(s',a’)},
which has been proved to be greater than or equal to
max, E{Q(s’,a’)} [Smith and Winkler, 2006]. Thus, a pos-
itive bias always exists in the single estimator.

Deep Q-Network (DQN)

extends Q-learning with neural network to solve complex
problems with extensive state spaces. It uses an online
neural network parametrized by € to approximate the vec-
tor of action values Q(s, ;) for each state s, and a target
network parameterized by 6’ which is periodically copied
from 6 to reduce oscillation during training. The neu-
ral network is optimized by minimizing the difference be-
tween the predicted value Q(s¢, as;6;) and the target value
Y,? = rip1 +ymax, Q(si41, a; 0}), using experienced sam-
ples (s¢, ag, 41, St+1) drawn from a replay memory. To
minimize the difference, the parameters of the network are
updated along with the direction of the target value YtQ es-
timated by experienced samples (sy,as, 741, St+1) drawn

from a replay memory using the following formula:

Orr1 = 0 + OZ]E[(YtQ - Q(St; Qg at))vetQ(St» Qg etﬂa ()

where Vg, Q(s¢, at; ;) is the gradient. Both the replay mem-
ory and the target network help DQN to stabilize learning and
can dramatically improve its performance. However, like tab-
ular Q-learning, using the single maximum estimator is prone
to cause overestimating, leading to poor performance in many
situations.

Double Q-learning

uses the double estimator to ease the overestimation. The
double estimator selects the action with the maximum Q
value and evaluates the Q values of different actions sepa-
rately in turn [Hasselt, 2010]. The double Q-learning algo-
rithm stores two Q-values, denoted QU and QV, and replaces
the estimated value max,s Q(s’,a’) in Equation [I] with the
combination QY (s', arg max, Q" (s’,a’)). Unfortunately,
Hasselt [Hasselt, 2010] proved that though the double esti-
mator can overcome the overestimation issue, a negative bias
is introduced in the same time which may harm the resulting
algorithm’s performance and effectiveness.

Double DQN

incorporates the idea of double Q-learning into DQN to avoid
the overestimation [Van Hasselt et al., 2016]l. It uses two sets
of Q-networks Q(s,a;0) and Q(s,a,d’): one for selecting
action and the other for estimating the target Q-value. At each
time the Q-network (s, a; #) is updated using the following
target value:

Y,? = Ry +9Q(se1, argmax Q(se11,a,6,); ;). (3)

By leveraging the above two Q-networks to select and eval-
uate the Q-values symmetrically in turn, this algorithm takes
advantage of the double estimator to reduce the overestima-
tion of Q values and lead to better performance in a variety of
complex RL scenarios.

Weighted Double Q-learning (WDQ)

uses a dynamic heuristic value 8, which depends on a con-
stant c, to balance between the overestimation of the single
estimator and the underestimation of the double estimator
during the iterative Q-value update process:

Q(S7 a)U7WDQ = BQU(& a*) + (1 - B)QV(Sa CL*), (4)

where a linear combination of QY and QY is used for
updating Q-value. When a* is chosen by QY i.e.,a* €
arg max, QY (s, a), QY(s,a*) will be positively biased and
Q" (s,a*) will be negatively biased, and vice versa. 3 €
[0, 1] balances between the positive and negative biases. Ex-
periments on tabular MDP problems show that more accu-
rate value estimation can indeed boost Q-learning’s perfor-
mance. However, it is still not clear whether this idea can be
extended to the end-to-end DRL framework to handle high-
dimensional problems.

Lenient Q-learning
[Potter and De Jong, 1994] updates the policies of multi-
ple agents towards an optimal joint policy simultaneously by



letting each agent adopt an optimistic dispose at the initial
exploration phase. This has been empirically proved to be
efficient at increasing the likelihood of discovering the op-
timal joint policy in stochastic environments and avoiding
agents gravitating towards a sub-optimal joint policy [Bloem-
bergen et al., 2015} [Palmer et al., 2018;; Panait et al., 2006j
Wei and Luke, 2016].

During training, lenient agents keep track of the tempera-
ture T3 (s, a) for each state-action pair (s, a) at time ¢, which
is initially set to a defined maximum temperature value and
used for measuring the leniency (s, a) as follows:

Z(St, Clt) =1 e*K*Tt(St,at)’ (5)

where K is a constant determining how the temperature af-
fects the decay in leniency. As suggested by [Wei and Luke,
2016|, T3 (s¢, a;) is decayed using a discount factor x € [0, 1]
and Ty11(st,at) = KTi(st,at). Given the TD error § =
YtQ — Qq(s¢, ag; 0y), the iterative update formula of lenient
Q-learning is defined as follows:

_ ) Q(sp,a) + b
Q(St,at) - { Q(ihat)
(©)

The random variable z ~ U (0, 1) is used to ensure that a neg-
ative update § is performed with a probability 1 — I(s¢, at).
Due to the initial state-action pairs being visited more of-
ten than the later ones, the temperature values for states
close to the initial state can decay rapidly. One solution
to address this is to fold the average temperature T'(s') =
IT}\ > a,ea T'(s'; a;) for next state s” into the temperature that

is being decayed for (s;, a;) [Wei and Luke, 2016, as below:

ifd >0o0rx > I(s,at),
otherwise.

T ) = r T (8¢, at) - if s’ is terminal,
S @) = R (1 =) % Ty(sy, aq) + nTy(s')  otherwise.
@)

where 7 is a constant controlling the extent that T'(s") is
folded in. We absorb this interesting notion of forgiveness
into our lenient reward network to boost the convergence in
cooperative Markov games which will be explained later.

3 Weighted Double Deep Q-Networks

In the section, we introduce a new multiagent DRL algorithm,
weighted double deep Q-networks (WDDQN), with two aux-
iliary mechanisms, i.e., the lenient reward approximation and
the scheduled replay strategy, to achieve efficient coordina-
tion in stochastic multiagent environments. In these environ-
ments, reward could be extremely stochastic due to the envi-
ronments’ inherent characteristics and the continuous change
of the coexisting agents’ behaviors.

For the stochastic rewards caused by the environments,
WDDQN uses the combination of the weighted double es-
timator and the reward approximator to reduce the estima-
tion error. As for the non-stationary coexisting agents, we
incorporate the leniency from lenient Q-learning [Palmer er
al., 2018 |Panait et al., 2006 into the reward approximator to
provide an optimistic estimation of the expected reward under
each state-action pair r(s,a). In addition, directly applying

prioritized experience replay [Schaul et al., 2016] in multi-
agent DRL leads to poor performance, as stored transitions
can become outdated because agents update their policies si-
multaneously. To address this, we propose a scheduled replay
strategy to enhance the benefit of prioritization by adjusting
the priority for transition sample dynamically. In the remain-
der of this section, we will describe these facets in details.

3.1 Network Architecture

WDDOQN outlined in Algorithm [I]is adapted from WDQ by
leveraging neural network as the Q-value approximator to
handle problems with high-dimensional state spaces. The
overall network architecture of the algorithm is depicted in
Fig. [1] To reduce the estimation bias, WDDQN uses the com-
bination of two estimators, represented as Deep Q-networks
QY and QY with the same architecture, to select action
a = maxy w (line 5). Besides, the target
Q&* (s, q) (lines 12 and 17) used for Q-value updating in
back-propagation is replaced with a weighted combination as
well (lines 11 and 16). Intuitively, the combination balances
between the overestimation and the underestimation. In addi-
tion, we also propose to use a reward approximator and an ef-
ficient scheduled replay strategy in WDDQN to achieve bias
reduction and efficient coordination in multiagent stochastic
environments.

Architecture of Weighted Double Decp Q-Networks
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Figure 1: Network Architecture of WDDQN

3.2 Lenient Reward Network

To reduce noise in stochastic rewards, we use a reward net-
work, which is a neural network estimator, to approximate the
reward function R(s, a) explicitly. The reward network can
reduce bias in immediate reward r yielded from stochastic
environments by averaging all rewards for distinct (s, a) pair
and be trained using the transitions stored in the experience
replay during the online interaction. When updating the net-
work, instead of using the reward r in transition (s, a,r, s’)
from experience memory, WDDQN uses the estimated re-
ward by the reward network (lines 12 and 17).

In addition to stochasticity, in a cooperative multiagent en-
vironment, the coexisting agents introduce additional bias to
r as well. The mis-coordination of coexisting teammates may



Algorithm 1 WDDQN

1: The maximum number of episodes: Mazg, the max-
imum number of steps: Maxg, global memory: D,
episodic memory: D¥, reward network: R”, deep Q-
networks: QU and QY

2: for episode = 1 to Maxg do
3: Initialize DF
4: for step=1to Mazg do
5: a  maxgy w (with e-greedy)
6: Execute a and store transitions into D¥
7: o Sample mini-batch (s, a,r, s’) of transitions from
D
8: Update QU or QY randomly
9: if update QU then
10: a* + argmax, QY (s, a)
11: Q¥(s',a*) <+  BRY(s,a*) + (1 —
6) QV ( 8/7 a*)
12: Qe (s, a) « RN (s,a) + Q¥(s',a*)
13: Update network QU towards (QTa&e*
14: else
15: a* + argmax, QY (s',a)
16: QY(s',a*) <+ BQV(s,a*) + (1 —
ARV (s',a*)
17: Qe (s,a) «+ RN (s,a) + QU(s', a*)
18: Update network Q" towards QTree*
19: end if
20: Update RY according to transitions in D

21: end for
22: Store D¥ into D
23: end for

lower the reward r for (s, a*) despite the agent has adopted
the optimal action. To address this, we use a lenient reward
network (LRN) enhanced with the lenient concept in [Pot-
ter and De Jong, 1994] to allow the reward network to be
optimistic during the initial exploration phase. The LRN is
updated periodically (line 20) as follows:

| Ri(st,ar) +ad
Rey1(se,ae) = { Ry(st,aq) otherwise.

(®

where R;(s¢,at) is the reward approximation of state s and

action a at time ¢, and § = 7> — R(s;,a;) is the TD

error between the Ry (s, a;) and the target reward Fts’a) =

1/n % obtained by averaging all immediate re-

i=1l..m "1
ward rl(s’a) of (s,a) pairs in experience memory. Note that
I(s¢, ay) inherits from Equation@ and has the same meaning,
which is gradually decayed each time a state-action (s, a) pair
is visited. Consequently, the LRN contributes to reduce bias
by reward approximation and can help agents to find optimal

joint policies in cooperative Markov games.

3.3 Scheduled Replay Strategy

Prioritized experience replay (PER) can improve the DQN
algorithm’s training efficiency by allocating samples with

Experience Replay Memory

scheduled replay strategy

maximum sample original

latest trajectory

Priority

trajectory

trajectory

ifd > 0o0rz < (s, ay),

Timeline

Figure 2: Comparison between the prioritized experience re-
play and the scheduled replay strategy: each dot represents a
sample (s, a,r,s), and a trajectory consists of an ordered se-
quence of samples. The x-axis represents the order that each
sample comes into the relay memory and the y-axis is the pri-
ority of each sample.

different priorities according to their TD error. Samples
with higher priorities are more likely to be chosen for net-
work training. However, in stochastic multiagent environ-
ments, due to the noisy reward and the continuous behavior
changes of coexisting agents, PER may deteriorate the algo-
rithm’s convergence and perform poorly. Given a transition
(s,a,r,s,d) with an extremely biased reward r, PER will
treat it as an important sample for its large TD error and will
frequently select it to update the network, though it is incor-
rect due to the big noise in r at the beginning. To address
this, we replace r with an estimation R (s, a) using LRN
to correct TD error, by which the PER can distinguish truly
important samples.

Another potential problem is that PER gives all samples
in the new trajectory the same priority, thus resulting in the
indistinguishability of importance for all new samples. To
be specific, in Fig. [2] the sample with the maximum prior-
ity is colored by red dot. PER gives all samples (blue dots)
in the latest trajectory with an identical priority || However,
in cooperative multiagent environments, the trajectories that
agents succeed in cooperation are relatively rare, and in these
trajectories the samples closer to the terminal state is even
more valuable than the ones far from the terminal state. Be-
sides, the Q(s,a) = r 4+ Q(s', a*) far from the terminal state
can further deteriorate if bootstrap of action value Q(s’, a*)
is already highly inaccurate, since inaccurate estimation will
propagate throughout the whole contiguous samples. These
two traits explain why samples that are close to the terminal
state should be frequently used for network training. To this
end, we develop a scheduled replay strategy (SRS) using a
precomputed rising schedule [wg, w1, ..., w,] with size n to
assign different priorities according to the sample’s position &
in the trajectory with n samples.

The values for w; = ef<*"" are computed using an expo-
nent p¢ which grows with a rising rate v > 1 for each ¢,
0 <% < n. The priority p; assigned to sample with index 7 is
obtained by multiplying the current maximum priority pmax
in experience memory (priority of the red point in Fig. |2)) by

ISee OpenAl source code for details:
https://github.com/openai/baselines.
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w;:
Pi = Pmax X W;

The SRS assigns higher priority to samples near the ter-
minal state (the green dot in Fig. [2) to ensure they are more
likely to be sampled for network training. In this way, the
estimation bias of the (s, a) near the terminal state is ex-
pected to decrease rapidly. This can significantly speed up
the convergence and improve the training performance, as to
be experimentally verified in the following section.

4 Experiments

Empirical evaluation is conducted to verify the effectiveness
of WDDQN in terms of reducing bias and achieving coordi-
nation in stochastic multiagent domains.

First, we present comparisons of double DQN (DDQN)
and WDDQN with /without LRN and SRS, denoted by WD-
DQN and WDDQN w.o. LRN+SRS, in terms of the bias re-
duction, learning speed and performance on a gridworld game
with raw visual input. Then, we use a cooperative Markov
game to investigate WDDQN’s effectiveness of finding an
optimal cooperative policy. A discussion about benefits of
WDDQN, LNR and SRS is given in the end.

r

) s R

Figure 4: Gridworld game. Figure 5: Predator game.

Table 1: Network architectures in WDDQN

# Network  Visual input  Filters in Conv. 1/2/3  Unit in F.C
DQN 84 %84 %3 32/64/64 512
LRN 84 %84 *3 16/16/16 128

We set the constant ¢ in 5 to 0.1 in WDDQN, parameters
K, k,n in lenient Q-learning to 2, 0.95 and 0.6 respectively.
Besides, the learning rate « for network training of DDQN,

lenient Q-learning is set to 0.0001. Table |1| depicts the ar-
chitecture of deep Q-networks and LRN in WDDQN. We use
three hidden convolution layers (using rectifier non-linearities
between each two consecutive layers), and a fully-connected
hidden layer. The output layer of DQN and LRN is a fully-
connect linear layer with a single output layer for each valid
action (s, a) and reward R(s, a). For exploration purpose,
DQN(e-greedy) is adopted with the € annealed linearly from
1 to 0.01 over the first 10000 steps. We used the Adam algo-
rithm with 0.0001 learning rate and the minibatches of size
32. We trained for a total of 2500 episodes and used a replay
memory of 8192 most recent frames. Last, to be fair, K, s, n
in LRN is the same as the lenient Q-learning while p. and p
in SRS is setto 0.2 and 1.1.

4.1 Pacman-like Grid World

The first experiment is an n X n pacman-like grid-world prob-
lem (Fig. , where the agent starts at the so (top left cell),
and moves towards the goal cell (pink dot at right bottom cell)
using only four actions: {north, south, east, west}. Every
movement leads the agent to move one cell in the correspond-
ing direction, except that a collision on the edge of the grid
results in no movement. The agent tries to search the goal
cell which may appear randomly in any position in the grid
world. The agent receives a stochastic reward of -30 or 40
with equal probability for any action entering into the goal
and ending an episode. Choosing north or west will get a re-
ward of -10 or +6, and south or east get a reward of -8 or +6
at a non-goal state. The environment is extremely noisy due
to the uncertainty in the reward function.

Empirical results in Figure [3| demonstrate that, under ex-
tremely stochastic environments, DDQN takes a long time
to optimize the policy, while WDDQN w.o. LRN+SRS and
WDDQN need much less episodes to get a better policy due
to the weighted double estimator. DDQN and WDDQN w.o.
LRN+SRS oscillate too frequently to converge to an optimal
policy, while WDDQN performs steadily and smoothly be-
cause of the use of LRN. Another finding is that the train-
ing speed of WDDQN is faster than the others, which is at-
tributed to the SRS. In general, WDQ works not as well as
in relatively simple RL problems and both DDQN and WD-
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Figure 6: (Left) Comparisons of WDDQN and its variants using the predator game with deterministic rewards; and (right)
comparisons of WDDQN and other algorithms using the predator game with stochastic rewards. Note that, each point in the
x-axis consists of 50 episodes, and the y-axis is the corresponding averaged reward. The shadow area ranges from the lowest

reward to the highest reward within the 50 episodes.

DQN w.o. LRN+SRS may not converge even after a very
long training time. By contrast, as shown in Fig. [[, WDDQN
learns efficiently and steadily due to the use of both LRN and
SRS.

4.2 Cooperative Markov Game

In this section, we consider the two predators pursuit prob-
lem. It is a more complex cooperative problem and firstly
defined in [Benda et al., 1986|l. Here we redefine it in a sim-
ple way. The robots in Figure [5| represent two agents trying
to enter into the goal state at the same time. The cell with
letter S is a suboptimal goal with a reward of +10 while G
is a global optimal with a reward of +80. There is a thick
wall (in gray) in the middle that separates the area into two
zones. In each episode, two agents start at the left bottom
cell and right bottom cell separately and try to go to the green
goal cell together. Each agent has four actions: {north, south,
east, west}. Every movement leads the agent to move one
grid in the corresponding direction, except that a collision on
the edge of the grid or thick wall results in no movement.
A reward of 0 is received whenever entering into a non-goal
state. The agent receives a positive reward for any action en-
tering into the goal together and ending an episode, otherwise
a negative reward of -1 is received with miscoordination.
There are two types of cooperative policies moving to-
wards the suboptimal goal cell S or the global optimal cell
G, as shown in the Fig. [5] In the remaining part, we in-
vestigate whether WDDQN and related algorithms can find
cooperative policies, especially the optimal policy.

Evaluation on WDDQN

Our goal is to train two agents simultaneously to coordinate
in order to get higher rewards. The performance of WDDQN

w.0. LRN+SRS, WDDQN(LRN and WDDQN in terms of
the average reward is depicted in Figure As WDDQN
w.0. LRN+SRS’s convergence is no longer guaranteed in the
neural network representation, it is not surprising that it fails
in finding the cooperative policy by directly combining WDQ
with neural network. By contrast, WDDQN(LRN), due to
the LRN, achieves coordination more quickly and finds the
optimal policy after a period of exploration. By leveraging
the SRS, WDDQN shows a more promising result that the
optimal policy is learned much faster than the two others.

Evaluation Against Other Algorithms

Here, we compare WDDQN against DDQN, a DRL algo-
rithm, and lenient Q-learning, a multiagent RL algorithm on
the same game except that the agent receives a reward of +10
or +100 with the possibility of 60% or 40% at goal S and a
deterministic reward of +80 at goal G. Goal S is still subop-
timal as its average reward is 46. This slight adjustment may
affect the algorithm’s performance by misleading the agent to
converge to the suboptimal goal where a higher reward may
appear accidentally.

Results in terms of the average reward are depicted in Fig.
where two dashed lines indicate optimal and suboptimal
policy with the expected rewards of 80 and 46, respectively.
Both WDDQN and lenient Q-learning outperform DDQN in
terms of the convergence speed and the average reward in all
experiments, which confirms the infeasibility of directly ap-
plying DRL algorithms in multiagent problems. Note that,
WDDQN, due to the use of both LRN and SRS, is more sta-
ble, performs better and is more likely to find the optimal so-
lution with the average reward of 80 than lenient Q-learning

2WDDQN(LRN) uses only LRN and is identical to WDDQN
w.o. SRS



with the average reward of 46 in such a stochastic multiagent
environment.

5 Conclusion

This paper proposes WDDQN with the lenient reward net-
work and the scheduled replay strategy to boost the training
efficiency, stability and convergence under stochastic multia-
gent environments with raw image inputs, stochastic rewards,
and large state spaces. Empirically, WDDQN performs bet-
ter than WDDQN w.o. LRN+SRS, DDQN and lenient Q-
learning in terms of the average reward and convergence rate
on the pacman and two predators pursuit domains.

One downside to our approach is that it only uses one agent
to explore the large-scale RL problems and train network at
the same time. These can significantly slow down the ex-
ploration procedure and affect WDDQN’s performance and
efficiency. This could be remedied in practice by accelerating
the training procedure of WDDQN using asynchronization,
as being used in the A3C algorithm [Mnih et al., 2016]. We
leave this investigation to future work.
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