Skip to main content

A Novel Variable-Gain Rectilinear or Circular Formation Algorithm for Unicycle Type Vehicles

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10984))

Included in the following conference series:

  • 2964 Accesses

Abstract

In this paper, we propose a novel variable-gain formation algorithm to steer a group of unicycle type vehicles moving in straight lines or circular orbits with three types of phase configurations (synchronized, balanced and stabilization of the average linear momentum). The algorithm design is carried out from the viewpoint of optimization theory to guarantee that control gains are variable. Specifically, a step length search algorithm used in optimization methods is employed to update the control gain at each iteration. The implementation details of the rectilinear/circular formation algorithm are given to show that the three types of phase configurations can be reached by utilizing corresponding well-designed objective functions. Furthermore, global convergence properties of the formation algorithm are analyzed. Both the results of simulations and experiments show good performance of the proposed formation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loria, A., Dasdemir, J., Jarquin, N.A.: Leader-follower formation and tracking control of mobile robots along straight paths. IEEE Trans. Control Syst. Technol. 24, 727–732 (2016)

    Article  Google Scholar 

  2. Bin, X., et al.: Distributed multi-robot motion planning for cooperative multi-area coverage. In: 13th IEEE International Conference on Control and Automation, Ohrid, pp. 361–366. IEEE Press (2017)

    Google Scholar 

  3. Briñón-Arranz, L., Schenato, L., Seuret, A.: Distributed source seeking via a circular formation of agents under communication constraints. IEEE Trans. Control Syst. Technol. 3, 104–115 (2016)

    Article  MathSciNet  Google Scholar 

  4. Zheng, R., Lin, Z., Yan, G.: Ring-coupled unicycles: boundedness convergence control. Automatica 45, 2699–2706 (2009)

    Article  MathSciNet  Google Scholar 

  5. Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Trans. Autom. Control 50, 121–127 (2005)

    Article  MathSciNet  Google Scholar 

  6. Lalish, E., Morgansen, K.A., Tsukamaki, T.: Oscillatory control for constant-speed unicycle-type vehicles. In: 46th IEEE Conference on Decision and Control, Louisiana, pp. 5246–5251. IEEE Press (2007)

    Google Scholar 

  7. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Siegwart, R., Beardsley, P.: Multi-robot system for artistic pattern formation. In: Proceedings of IEEE International Conference on Robotics and Automation, Shanghai, pp. 4512–4517. IEEE Press (2011)

    Google Scholar 

  8. Sepulchre, R., Paley, D.A., Leonard, N.E.: Stabilization of planar collective motion: all-to-all communication. IEEE Trans. Autom. Control 52, 811–824 (2007)

    Article  MathSciNet  Google Scholar 

  9. Sepulchre, R., Paley, D., Leonard, N.E.: Stabilization of planar collective motion with limited communication. IEEE Trans. Autom. Control 53, 706–719 (2008)

    Article  MathSciNet  Google Scholar 

  10. Napora, S., Paley, D.: Observer-based feedback control for stabilization of collective motion. IEEE Trans. Control Syst. Technol. 21, 1846–1857 (2013)

    Article  Google Scholar 

  11. Jain, A., Ghose, D.: Collective circular motion in synchronized and balanced formations with second-order rotational dynamics. Commun. Nonlinear Sci. Numer. Simul. 54, 156–173 (2018)

    Article  MathSciNet  Google Scholar 

  12. Seyboth, G.S., Wu, J., Qin, J., Yu, C., Allgower, F.: Collective circular motion of unicycle type vehicles with nonidentical constant velocities. IEEE Trans. Control Netw. Syst. 1, 167–176 (2014)

    Article  MathSciNet  Google Scholar 

  13. Wright, S., Nocedal, J.: Numerical Optimization. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5

    Book  MATH  Google Scholar 

  14. Antonelli, G., Chiaverini, S., Fusco, G.: A calibration method for odometry of mobile robots based on the least-squares technique: theory and experimental validation. IEEE Trans. Robot. 21, 994–1004 (2005)

    Article  Google Scholar 

  15. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, New York (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahu Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Qin, J., Liu, Q., Kang, Y. (2018). A Novel Variable-Gain Rectilinear or Circular Formation Algorithm for Unicycle Type Vehicles. In: Chen, Z., Mendes, A., Yan, Y., Chen, S. (eds) Intelligent Robotics and Applications. ICIRA 2018. Lecture Notes in Computer Science(), vol 10984. Springer, Cham. https://doi.org/10.1007/978-3-319-97586-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97586-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97585-6

  • Online ISBN: 978-3-319-97586-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics