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Abstract. Aiming to improve the checkerboard corner detection robustness 

against the images with poor quality, such as lens distortion, extreme poses, and 

noise, we propose a novel detection algorithm which can maintain high accuracy 

on inputs under multiply scenarios without any prior knowledge of the checker-

board pattern. This whole algorithm includes a checkerboard corner detection 

network and some post-processing techniques. The network model is a fully con-

volutional network with improvements of loss function and learning rate, which 

can deal with the images of arbitrary size and produce correspondingly-sized out-

put with a corner score on each pixel by efficient inference and learning. Besides, 

in order to remove the false positives, we employ three post-processing tech-

niques including threshold related to maximum response, non-maximum sup-

pression, and clustering. Evaluations on two different datasets show its superior 

robustness, accuracy and wide applicability in quantitative comparisons with the 

state-of-the-art methods, like MATE, ChESS, ROCHADE and OCamCalib. 

Keywords: Camera Calibration, Checkerboard Corner Detection, Robustness, 

Fully Convolutional Network. 

1 Introduction 

Camera calibration is a classic task in machine vision with the purpose of estimating 

the intrinsic parameters as well as the distortion coefficients of camera; the most widely 

used calibration pattern is the planar checkerboard. Compared with other types of pat-

terns, such as three dimensional objects [1], circles [2] and self-identifying patterns [3], 

the checkerboard pattern has the stronger robustness with respect to distortion bias and 

perspective bias [4]. It is also suitable for 3D pose estimation and localization in robot 

vision, and easy to generate at a low price. However, the checkerboard with poor qual-

ity, like low resolution, lens distortion, extreme poses, and sensor noise, can also lead 

to inaccurate inner corner detection and failed camera calibration. 

There are various methods for the checkerboard corner detection. Harris [5], SUSAN 

[6] and their improved versions [7, 8] adopt distinct corner features to find target points, 

but those do not generally work well on chessboard pattern. Wang et al. [9] refer to 

checkerboard corner as the intersection of two adjacent grid lines, which could detect 
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the checkerboard pattern with small lens distortions successfully, but it will be less 

accurate for wide-angle cameras. ChESS [10] uses the specific features of circular 

neighborhood around the corners to select the candidates and it is faster and accurate 

for most cases. However, this method will produce a lot of false detections and heavily 

depends on the hand-crafted threshold. The widely used checkerboard detection algo-

rithm embedded in OPENCV is based on the work of Vezhnevets [11]. It applies ero-

sion to separate black quadrangles, and then combines them to construct the checker-

board and calculate the inner corners. Rufli et al. extend this algorithm in OCamCalib 

[12] to be more robust to lens distortion, while for low resolution images and highly 

distorted images, its detection performance is not as good as ROCHADE [13], a more 

complex combination of general image features, especially under strong perspective 

distortion as often presented in wide baseline stereo setups. What’s more, these afore-

mentioned algorithms need to know the number of squares of the calibration pattern in 

advance. Some algorithms attempt to use machine learning methods to detect the cor-

ners, such as FAST [14] and FAST-ER [15]. A foray into neural networks is MATE 

[16], which consists of three convolutional layers to extract the intrinsic feature effec-

tively. But it may cause a little bit more false positives even for medium and high res-

olution images with little lens distortion.  

In this paper we propose a fully convolutional neural network (CNN) model, namely 

checkerboard corner detection network (CCDN), to find the inner corners of checker-

boards under multiply scenarios efficiently. This model can take an image of any size 

as input and output the response map of corresponding spatial dimensions with a corner 

score on each pixel. Aided by three post-processing techniques, threshold related to 

maximum response, non-maximum suppression, and clustering, to eliminate false pos-

itive points in different cases, this model is more accurate and robust for the checker-

board corner detection. 

The outline of this paper is as follows. Section 2 details the architecture and proper-

ties of our checkerboard corners detection network and its training, as well as tech-

niques in the post-processing. The following section describes the datasets for training 

and testing. Experiments and results are discussed in Section 4. Conclusions are given 

in the last section. 

2 Methodology 

The whole algorithm can be divided into two parts: the first is a fully convolutional 

network for extracting a series of corner candidates, which is detailed in Section 2.1; 

the second part, including threshold related to maximum response, non-maximum sup-

pression and clustering, is described in Section 2.2 to eliminate the false positives.  

2.1 Checkerboard Corner Detection Network 

Architecture. A checkerboard corner detection network is presented which can take an 

image of any size as input and output the response map of corresponding spatial dimen-

sions with a corner score on each pixel. As depicted in Fig. 1, this network consists of 
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six convolutional layers, of which the first and the fourth are followed by max-pooling 

layers of size 2 2 . The ReLU non-linearity [17, 18] is applied to the output of each 

convolutional layer as the activation function. 

 

Fig. 1. An illustration of the architecture of CCDN. It is a fully convolutional network with six 

convolutional layers, and the first and fourth are followed by max-pooling layers. The output is 

a single-channel response map with same size to the input. The activation functions following 

each convolutional layer are ReLUs. 

The kernels of the first layer are intended to extract some useful features from the 

input image, so the spatial support radius of them should be set large enough to suppress 

the effect of blur and noise. As research in [16], a larger radius may lose some recall of 

the real corners while a smaller may falsely detect background pixels as checkerboard 

corners. To make a tradeoff between recall and precision, here we choose the spatial 

support radius of four pixels for the first layer, which is shown to be sufficient for cor-

ners detection of our model in the result section.  

The first convolutional layer filters the input gray-scale image X  into 20 channels 

1, ( )iL X  with kernels 1,iW  of size 9 9 1   and biases 1,ib : 

 1, 1, 1,( )( , ) max(( )( , ) , 0). 1...20i i iL X x y W X x y b i      (1) 

     The second convolutional layer takes the max-pooled output of the first layer as 

input and filters it into 20 channels with kernels 2, ,i jW  of size 3 3 20   and biases 2 jb , 

while the third and fourth convolutional layers of same size filters are followed without 

any pooling: 
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The fifth convolutional layer has 20 kernels of size 3 3 20   connected to the max-

pooled output of the fourth layer, as explained like Eq. (2). The last convolutional layer 

combines the 20 channels resulting from the fifth layer into a single response map, with 

small filters of size 3 3 20  . The output of this layer is given as: 
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Note that the stride of kernels in both convolutional layers and max-pooling layers 

is one pixel, and the zero padding is applied to make the output feature map have the 

equivalent dimensions with input image. This network can be tailored towards applica-

tion-specific scenarios for its capacity will vary with the depth and settings. We initial-

ize the weights in all convolutional layers from a zero-mean Gaussian distribution with 

standard deviation 0.1, and the neuron biases with the constant 0.1. 

Considering the gray-scale input and the spatial support of 9 9  for the first filters, 

our net has 16301 parameters to train, which are a little more than MATE (only 2939 

parameters), but much fewer than other types of object detection networks [19-21]. A 

smaller spatial support can get more effective input samples (291716 for MATE, 

296100 for our net, refer to an 640 480  image), and also little overlap. Furthermore, 

compared with the convolutional layers in MATE, this net is deeper with more filters, 

which can extract more features adapted to various scenarios, with no significant in-

crease in time consumption, as well as less risk of overfitting. 

Loss Function. For training this net, we assign a binary class label of being a corner or 

not to each input sample: the ground-truth corner locations are assigned a positive label 

(=1), while those non-corner locations are assigned a negative label (=0), then the cor-

ner label of the binary ground-truth image is denoted as ( , )G x y . All the parameters of 

the neural net are collected into a single vector p . Unlike MATE, we use cross entropy 

instead of mean square error as the loss function, for it is more suitable for discrete 

output variables [22]. The total loss function is defined as: 
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where ( , )a x y  denotes the clipped output of the last layer as: 
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and thus the loss function can be meaningful to all pixels’ responses. Noted that there 

are only few true positives (49, 54, 81, and 156 for our training set) of all effective input 

samples in an image and the mean loss to each location may make the net mistake all 

of them for the non-corner locations. In order to eliminate the effect of the disparity 

that the negative samples are dominate, we normalize the loss by the number of ground-

truth positives ( pN ) and negatives (
NN ) on each term. In addition, we use the 

2L  pa-

rameter regularization to reduce the net’s overfitting.   is a balancing parameter that 
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weights the contribution of regularization term relative to the cross entropy function, 

and here we set =0.01 . 

Training. This network can be trained by back-propagation and stochastic gradient de-

scent (SGD). We use a batch size of 20 images (about 900 to 3120 positive labels) and 

a momentum of 0.9 [18]. The learning rate is initially set to 0.01, and then decreases 

exponentially as the training progresses. The learning rate 
iv  of 

thi  iteration is ex-

pressed as: 

 
/

0

i

iv v


     (6) 

where 
0v  is the initial learning rate,   is the decay rate, and   represents the number 

of iterations required to train all the training images at a time, equal to the total number 

of training samples divided by the number of those in each batch. /i     with     de-

noting floor operation, guarantees the decayed learning rate follows a staircase function 

so that all samples can be trained with same rate. Appling exponential decay to the 

learning rate can not only make the net get close to the optimal solution in the early 

stage of training, but also guarantee that it will not have too many fluctuations in the 

later stage, so as to get closer to the local optimal solution. Our implementation uses 

TensorFlow [23]. 

2.2 Techniques for Eliminating the False Positives 

The output of this network is a response map with a corner score on each pixel location, 

and the map is of same spatial dimensions as the input. This section introduces three 

efficient techniques combined to find the correct checkerboard corners effectively, for 

they are designed to eliminate false positive points in different cases. 

Threshold Related to Maximum Response. As the loss function explained above, our 

model is a binary network for checkerboard corner detection. During the training pro-

cess it accelerates responses of corner locations closer to 1 and responses of non-corner 

locations closer to 0. Thus we can set a threshold to distinct them, and the threshold can 

be adjusted to a higher value (for more precision) or a lower value (for more recall). 

Furthermore, different images contain different scenes, and their response values are 

subject to different distributions so a global fixed threshold is not valid for them. 

By observing the distribution of the response values, we find that responses of the 

ground-truth corner locations are often higher than 1, even some false positives may 

get a value closing to 1, for neither cross entropy or mean square error sets any con-

strains on the output. This is probably one of the principal reasons why MATE (a fixed 

threshold of 0.5) is insensitive to the false positives even for pictures with little lens 

distortion and noise. However, we also find that the number of corner points is approx-

imately linear with the maximum of responses. Here we set half of the maximum as the 

threshold, which is proved to be useful for most cases. 

file:///F:/æ��é��è¯�å�¸/Dict/7.5.2.0/resultui/dict/
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Non-maximum Suppression. After the threshold processing, the locations with lower 

responses are treated as false positives and removed. However, due to the error of man-

ual annotation and local optimal learning of neural networks, many locations in the 

immediate neighborhood of corners or near the borders of the image may have slightly 

lower responses than those corners, and the threshold cannot effectively eliminate them. 

Non-maximum suppression (NMS), which has been used effectively in many object 

detection algorithms to solve the high overlap between the predicted bounding-boxes, 

can be adapted to our model with few modifications. Construct bounding-boxes (with 

area of 4 4  pixels) centered around the remaining locations, then apply NMS on them 

based on the sorted response values, the satisfactory results can be got with the thresh-

old at 0.5. In the result section we will show that NMS can eliminate the double detec-

tions without harming the ultimate detection accuracy. 

Clustering. For pictures with complex scenes, there are many false positives that have 

very similar appearance to the corners, and therefore their response values are almost 

the same as those of corners, so that the techniques mentioned above can't distinguish 

them very well. Considering that the checkerboard has a very regular geometric prop-

erty, while the false positives are distributed randomly and a little away from the check-

erboard in the image, we can use the clustering algorithms to separate them. The k-

means++ method is a widely used clustering technique that classes all points into cer-

tain clusters according to the minimized squared distance between points in the same 

cluster [24]. Here we apply this method to the remaining responses with 10k  , then 

calculate the number of points ( 1 .)iN i k  in each cluster and eliminate points in the 

cluster with 2iN  . 

3 The datasets 

The datasets for training and testing of our model should be large enough with consid-

ering lens distortion, extreme poses and sensor noise. The training is performed on two 

image series: images captured by us directly and digitally augmented versions of these 

captured images. 

For generating abundant training images, we used four types of checkerboards with 

7 7 , 6 9 , 7 11 , 9 9 ,12 13  inner corners as calibration patterns. Each pattern was 

placed under various circumstances to capture the datasets, with the background clut-

tered intentionally for simulating realistic calibration environments. In order to make 

our model become rotation (to some extent) and intensity invariant, here we rotated the 

original images by 90,180,270 degrees and reversed the intensities of half of those pic-

tures randomly. The camera we used has little lens distortion and well capture condi-

tions without much noise, so we artificially added both radial and tangential distortion 

as well as Gaussian noise as mentioned in MATE to multiply these pictures. Finally, 

all (a total of 8900 images) were converted to gray-scale images and resized into VGA 
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resolution with 640 480  pixels (an optional operation) as the training dataset, as il-

lustrated in Fig. 2. Among them 8000 images were selected randomly as the training 

dataset, and the rest were taken as the validation dataset. 

 

Fig. 2. Several sample images from the augmented data set. The top row shows the original 

image, the gray-scale image and the intensities inverted image. The second row shows the image 

rotated 180 degrees, the image with gaussian noise and the image with lens distortion. 

The datasets for testing the generalization performance of our model consist two 

parts: the uEye and GoPro from ROCHADE [13]. The uEye dataset (with a resolution 

of 1280 1024  pixels) has slight lens distortion and serve to evaluate the robustness 

against perspective transforms and noise. The GpPro dataset (with a resolution of 

4000 3000  pixels) is down-sampled to half-resolution and used to illustrate the ro-

bustness against lens distortion. These two datasets are shown in Fig. 3. 

   

(a)                                                      (b) 

Fig. 3. Two examples from the uEye (a) and GoPro (b) datasets[13] with perspective transforms 

and lens distortion. The presented images are resized with nearest neighbor interpolation. 
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Checkerboard corner detection is a supervised learning task so the ground-truth cor-

ner locations should be obtained accurately. At first we annotated the four outer corners 

of the checkerboard manually, and then the interior corners were interpolated to con-

verge locally to the saddle points. Finally, we checked and removed the wrong corners. 

After annotations we normalized per-pixel value to between 0 and 1 corresponding with 

the corner label mentioned in subsection 2.1, and so to some extent the response value 

can also be regarded as the probability to be a corner or not. 

4 Experiments and Results 

Two groups of experiments are presented to initiate a detailed study of the proposed 

model’s performances. The first experiment is to test the learning ability of cross en-

tropy as the loss function comparing with mean squared error (MSE) mentioned in 

MATE, as well as the feasibility of the learning rate with exponential decay. In order 

to make a quantitative comparison, we use the mean squared value (MSV) of the dif-

ference between the real label and the predicted value on all pixels in validation images. 

   

(a)                                                                    (b) 

Fig. 4. MSV versus Training time (epochs) on the validation dataset. The neural network with 

cross entropy (red line) is equivalent to that with MSE (blue line), except that the initial learning 

rates were chosen independently to make training as good as possible.  

We can see from Fig. 4(a) that cross entropy can get the similar result as MSE after 

2000 epochs. But the neuron network with cross entropy drove down the cost rapidly 

while MSV of network with MSE started out much more slowly for the first 150 epochs, 

as shown in Fig. 4(b). The results comply with the view in [22] that mean squared error 

usually studies slowly when used with gradient-based optimization. Taken together, the 

cost value decreased rapidly at first but gradually slowed down without too many mu-

tations, this is consistent with the design of the learning rate with exponential decay 

with the purpose to get a local optimal solution. The purpose of this experiment is not 

to show the learning ability of the whole model, but only to illustrate that the loss func-

tion and the learning rate with exponential decay presented are feasible techniques. 
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In the second group of experiments we performed several quantitative comparisons 

with the state-of-the-art methods MATE, ChESS, ROCHADE and OCamCalib with 

respect to the accuracy, the missed corner rate, double detection rate, and the number 

of false positives on the testing datasets. The distance between the detected corner and 

the closest ground truth corner of all images is calculated, and if the distance is less 

than five pixels, the detected point is regarded as a true corner. The accuracy denotes 

the average distance calculated above. The missed corner rate shows how many ground 

truths are detected as non-corners, and the double detection rate illustrates how many 

points close to each other are detected as the same corner. False positives show how 

many non-corner locations are detected as the corners on the whole dataset. 

Public implementations of the last three algorithms can be used in this evaluation. 

However, considering that the training details and the hyper parameters of MATE are 

not available, we used the best published results shown in [16]. The results of these 

experiments are shown in Table 1 and Table 2. 

Table 1. Results on the uEye dataset 

Method 
Accuracy 

(px) 
Missed Corners 

(%) 

Double Detections 

(%) 
False Positives 

CCDN 0.812 1.169 0.000 93 

MATE 1.009 3.065 0.809 492 

ChESS 0.946 3.398 0.000 11 

ROCHADE 1.510 2.895 0.000 1 

OCamCalib 0.319 0.000 0.000 0 

Table 2. Results on the GoPro dataset 

Method 
Accuracy 

(px) 
Missed Corners 

(%) 

Double Detections 

(%) 
False Positives 

CCDN 0.576 0.907 0.000 0 

MATE 0.835 4.566 4.556 389 

ChESS 1.389 5.481 0.222 56 

ROCHADE 1.807 5.593 0.000 3 

OCamCalib 0.458 0.537 0.000 0 

 

We can see above that the proposed model does not lose performance over these 

state-of-the-art methods, whether precision or recall. In terms of the accuracy, missed 

corners rate and double detection rate, our algorithm can get a much better detection 

result than MATE, as well as ChESS and ROCHADE. In particular, the accuracy can 

be better by using sub-pixel precision approaches [13, 25]. By adopting threshold re-

lated to maximum response, NMS and clustering, the number of false positives reduces 

significantly than MATE, and even maintains zero on the images with lens distortion.  

OCamCalib performs the best on the two datasets, but it requires the number of squares 

in checkerboard pattern in advance (that’s why it didn't get any false positives and dou-

ble detections), and it can only be used on the checkerboards with wide white border. 

So our model outperforms all tested methods on the generalization performance without 

any prior knowledge and is more adaptable to complex scenarios such as checkerboards 

with intensity reversal. 
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5 Conclusion 

In this paper we have presented a novel checkerboard corner detection algorithm to find 

the inner corners of checkerboards with high robustness for most situations. This whole 

algorithm contains a checkerboard corner detection network (CCDN) and some post-

processing techniques. CCDN is a fully convolutional neural network, which contains 

six convolutional layers and about 16000 parameters. It realizes a complex and efficient 

combination of detected features to select the checkerboard corner candidates effi-

ciently with two improvements of loss function and learning rate. Threshold related to 

maximum response, non-maximum suppression and clustering are gathered as the post-

processing to eliminate false positives in different cases. Quantitative comparisons on 

two different datasets in results show it outperforms the state-of-the-art methods in-

cluding MATE, ChESS, ROCHADE, and OCamCalib without any prior knowledge of 

the checkerboard pattern. Thus it can be seen as a specific corner detector that is accu-

rate, robust and suitable for automatic detection. 

Acknowledgement 

This work is partially supported by the National Natural Science Foundation of China 

(Grant No. 51335004 and No. 91648203) and the International Science & Technology 

Cooperation Program of China (Grant No. 2016YFE0113600). 

References 

1. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3d machine vision 

metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Auto-

mation 3(4), 323–344 (1987). 

2. Heikkila, J.: Geometric camera calibration using circular control points. IEEE Transactions 

on Pattern Analysis and Machine Intelligence 22(10), 1066–1077 (2000). 

3. Fiala, M., Shu, C.: Self-identifying patterns for plane-based camera calibration. Machine 

Vision and Applications 19(4), 209–216 (2008). 

4. Mallon, J., Whelan, P.F.: Which pattern? Biasing aspects of planar calibration patterns and 

detection methods. Pattern Recognition Letters 28(8), 921–930 (2007). 

5. Harris, C., Stephens,M.: A combined corner and edge detector, in: Proceedings of The 

Fourth Alvey Vision Conference, vol. 15, pp. 147–151. Manchester, UK (1988).  

6. Smith, S. M., Brady, J. M.: SUSAN—a new approach to low level image processing. Inter-

national journal of computer vision, 23(1), 45-78 (1997). 

7. Su, J., Duan, X., Xiao, J.: Fast detection method of checkerboard corners based on the com-

bination of template matching and Harris Operator. In Information Science and Technology 

(ICIST), 2013 International Conference on, pp. 858-861. IEEE (2013). 

8. Zhu, W. et al.: A fast and accurate algorithm for chessboard corner detection. In Proceedings 

of the IEEE 2nd International Congress on Image and Signal Processing (CISP’09), pp. 1–

5. Tianjin, China (2009). 

9. Wang, Z. et al.: Recognition and location of the internal corners of planar checkerboard 

calibration pattern image. Applied mathematics and computation 185(2), 894–906 (2007). 



11 

10. Bennett, S., Lasenby, J.: ChESS—Quick and robust detection of chess-board features. Com-

puter Vision and Image Understanding, 118, 197-210 (2014). 

11. Vezhnevets, V.: OpenCV calibration object detection. Part of the Free Open-Source 

OpenCV Image Processing Library (2016). 

12. Rufli, M., Scaramuzza, D., Siegwart, R.: Automatic detection of checkerboards on blurred 

and distorted images. In: Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ In-

ternational Conference on. pp. 3121–3126. IEEE (2008). 

13. Placht, S. et al.: ROCHADE: Robust checkerboard advanced detection for camera calibra-

tion. In: Computer Vision - ECCV 2014: 13th European Conference, Zurich, Switzerland, 

6–12 September, Proceedings, Part IV, pp. 766–779 (2014). 

14. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In European 

conference on computer vision, pp. 430-443. Springer, Berlin, Heidelberg (2016). 

15. Rosten, E., Drummond, T.: Faster and better: a machine learning approach to corner detec-

tion. IEEE transactions on pattern analysis and machine intelligence 32(1), 105-119 (2010). 

16. Donné, S. et al.: MATE: Machine learning for adaptive calibration template detection. Sen-

sors, 16(11), 1858 (2016). 

17. Nair, V., Hinton, G. E.: Rectified linear units improve restricted boltzmann machines.  In 

Proc. 27th International Conference on Machine Learning, pp. 807-814 (2010). 

18. Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep convolutional 

neural networks. In Advances in neural information processing systems, pp. 1097-1105 

(2012). 

19. Ren, S. et al.: Faster R-CNN: Towards real-time object detection with region proposal net-

works. In Advances in neural information processing systems, pp. 91-99 (2015). 

20. Redmon, J. et al.: You only look once: Unified, real-time object detection. In Proceedings 

of the IEEE conference on computer vision and pattern recognition, pp. 779-788 (2016). 

21. Sermanet, P. et al.: Overfeat: Integrated recognition, localization and detection using con-

volutional networks. In: ICLR (2014). 

22. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press, Cambridge (2016). 

23. Abadi, M. et al.: TensorFlow: A System for Large-Scale Machine Learning. In OSDI, vol. 

16, pp. 265-283 (2016). 

24. Arthur, D., Vassilvitskii, S.: k-means++: The Advantages of Careful Seeding. In Proceed-

ings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 1027-

1035 (2007). 

25. Lucchese, L., Mitra, S. K.: Using saddle points for subpixel feature detection in camera 

calibration targets. In Proceedings of the IEEE 2002 Asia-Pacific Conference on Circuits 

and Systems, pp. 191-195. Bali, Indonesia (2002). 

 


