
ar
X

iv
:1

80
6.

10
75

5v
2

 [
cs

.A
I]

 2
2

Ju
l 2

01
8

A Computational Theory for Life-Long Learning

of Semantics

Peter Sutor Jr.1[0000−0002−9200−3748], Douglas
Summers-Stay2[0000−0002−9286−5612], and Yiannis Aloimonos1

1 University of Maryland, College Park MD 20742, USA
psutor@umd.edu, yiannis@cs.umd.edu

2 U.S. Army Research Laboratory Adelphi, Adelphi MD 20783, USA
douglas.a.summers-stay.civ@mail.mil

Abstract. Semantic vectors are learned from data to express semantic
relationships between elements of information, for the purpose of solving
and informing downstream tasks. Other models exist that learn to map
and classify supervised data. However, the two worlds of learning rarely
interact to inform one another dynamically, whether across types of data
or levels of semantics, in order to form a unified model. We explore the
research problem of learning these vectors and propose a framework for
learning the semantics of knowledge incrementally and online, across
multiple mediums of data, via binary vectors. We discuss the aspects of
this framework to spur future research on this approach and problem.

Keywords: Semantic Vectors · Hyperdimensional Computing · Knowl-
edge Representation · Incremental Learning · Dynamic Systems.

1 Introduction

Semantic vector learning finds vector representations of semantic relationships
observed in data that have useful properties, such as exhibiting similarity in the
components of vectors via closeness under a metric, or allowing vector arith-
metic to propagate semantic meaning. These vectors are learned by statistical
distributions of co-occurrence in data (usually unsupervised), whose structure
is embedded in a high dimensional space. With recent advances in neural net-
works, progress on semantic vectors has seen much success. But such models
feel disjoint as semantic insight transfers poorly across them. State-of-the-art
techniques rely on static datasets that estimate mapping functions across their
distributions. Adapting models to another domain often requires complete re-
training, or at least fine-tuning/transfer learning [14]. In this paper, we examine
the problem of learning semantics from supervised and unsupervised data to
facilitate incremental and life-long learning. This is desirable as it synthesizes
the semantics from not just multiple models, but potentially entirely separate
domains (vision, linguistics, audio, etc.) into consistent vector representations
for use in other tasks. The incremental process allows new models to come into
existence at any time. We describe a general theoretical framework that can
compute such vector representations in an online and perpetual way.

http://arxiv.org/abs/1806.10755v2

2 P. Sutor, D. Summers-Stay et al.

2 Background Information

2.1 Related Work

Our primary difference is the online and incremental learning capabilities of the
vectors themselves, without a need for existing vector models, and the use of
binary vectors to allow for useful and general data structure representation, as
suggested by Kanerva [7]. The problem of learning symbolic vectors for struc-
tured data has been explored using neural networks by Bordes et al. [2], with
newer techniques [13] learning from knowledge graph relationships, such as Fre-
itas’ DRNs [5]. Additionally, the reasoning, inference and lookup structures for
embedded knowledge graphs are a well studied topic [3,4]. Most are limited to
static information, however there has been much work on the problem of com-
pleting relationships in knowledge graphs, such as TransE [1] and its derivatives.

2.2 Motivation

The word2vec [11] paradigm forms semantic vectors for words by predicting the
context around a word via an unsupervised process, given a corpus. The famous
king−man+woman ≈ queen example shows its ability to learn deep analogies
between word vectors. However, consider: smokestack − cigarette + firework.
It’s clear that something like “missile” would be a valid answer to this analogy.
This is not the case for word2vec, which does not return “missile”, or anything
sensible, for even the top 100 matches for the popular Google News word2vec
model [12]. Why does it fail for this example, but not for much deeper analogies
such as death− life+good ≈ bad? The analogy is purely visual/functional here.
However, word2vec never ‘sees’ anything visual, only patterns in words, where
such a relationship is unlikely to occur. A similar situation is apparent in the
auditory domain: quack − bird+ car = honk also fails in word2vec.

Clearly, learning human-level semantics requires integration of hierarchically
built-up data and relationships from differing domains. For example, neural
networks generalize better by using character level patterns as well as word
level [8,15]. A general model should include multiple forms and levels of per-
ception into a single semantic model that takes everything into account, from
a general intelligence perspective. This is supported in the biological setting,
where it seems that neurons can take on other roles over time, when neces-
sary [6], suggesting that many cortical neurons treats information in a similar
way.

2.3 Incremental, Online, and Generalized Semantic Learning

Our goal is to take raw input from various perceptions, outputs of other models
and unify them. Such models give semantically significant relationships, that
could be learned or heuristic in nature. This could be between sequences of raw
data, more complex mappings of words to parts of speech, or dependency arcs
between words. In the visual domain, patterns of pixels can map to classification

A Computational Theory for Life-Long Learning of Semantics 3

labels. We can visualize this as building a graph of relationships. Short of numeric
regression, most outputs of models can be expressed as edges between nodes, due
to their discrete nature. New info is easily absorbed by simply updating the graph
and statistics on it. We wish to find appropriate vectors for the nodes. Since new
knowledge comes in an online process, as new observations, new nodes or edges in
the graph, or the addition of new models to the system, these vectors themselves
must be quickly adjusted in an equally online and incremental process.

2.4 Long Binary Vectors as General Features

As noted by Kanerva [7], long binary vectors, on the order of 10,000 compo-
nents, are a promising vector representation. Consider the space B

n = {0, 1}n.
This space contains |Bn| = 2n possible vectors. No computational system needs
anywhere near 210,000 vector representations. This space represents the corners
of a 10,000 dimensional hypercube, so every point in the space has the same
distribution of distances to other points. Let:

H(x, y) =
n
∑

i=0

Ixi 6=yi
(i) =

n
∑

i=0

xi ⊕ yi = |x⊕ y| (1)

be the Hamming Distance, where Ixi 6=yi
is the indicator that the bits at i between

x and y disagree, returning 1 in this case, and 0 when they agree, a ⊕ b is the
bitwise exclusive-or (XOR) operation, and |a| is the number of 1’s in a. The
number of bits of disagreement is the distance between points. Let:

HN (x, y) =
1

n
H(x, y) (2)

be the Normalized Hamming Distance, which expresses the distance on a real
scale of 0 to 1. Assuming each possible vector is equally likely, the average
Normalized Hamming Distance is 0.5. Furthermore, under these assumptions,
with n = 10, 000, their distribution is binary with mean 5000 bits and standard
deviation 50; this implies that for any significant deviation from distance 0.5,
the distribution quickly becomes very sparse. An astronomically vast majority
of vectors have distances very close to 0.5. Randomly drawn vectors are nearly
guaranteed to differ from one another by about 5000 bits, or distance 0.5.

This distribution is resistant to noise in its vectors, as a large portion of the
bits in any vector would have to be randomly flipped before the distance becomes
very big between another nearby vector. Two related vectors differing even by
5% of their bits is so astronomically unlikely that they may as well still be the
same vector. As pointed out by Kanerva, such long binary vectors also have the
property of encoding various forms of information that can be later recovered
even under noisy conditions. This comes primarily from three operations:

1. The XOR c = a⊕ b: Since XOR is an involution when one operator is fixed,
and associative and commutative, c ⊕ a = (a ⊕ b) ⊕ a = a. We can exactly
recover a or b if we have one or the other, or approximately with noise.

4 P. Sutor, D. Summers-Stay et al.

2. The permutationΠ : This permutes a vector x’s components into a new order,
by computing the product Πx. If the permutation is randomly generated
for a long binary vector, the new binary vector is very likely to have a
distance (2) near 0.5. We can representΠ as a permutation of index locations
1 to n. The product simply swaps components of x to the order in Π .

3. The consensus sum, +c(A), over the set of vectors A: This sum counts 1’s
and 0’s component-wise across each element of A, and sets the component
to the corresponding value with the bigger count. Ties, only possible in a
sum of an even number of elements, can be broken by randomly choosing.

Note that mapping by XOR or permuting preserves distances. For mapping a:

H(a⊕ x, a⊕ y) = |a⊕ x⊕ a⊕ y| = |a⊕ a⊕ x⊕ y| = |x⊕ y|
H(Πx,Πy) = |Πx⊕Πy| = |Π(x⊕ y) = |x⊕ y|

(3)

as permutation is distributive, thus Πa⊕Πb = Π(a⊕b), and permuting doesn’t
change the number of 1’s or 0’s, so |Πc| = |c|, for any a, b, and c.

2.5 Representing Data Structures With Binary Vectors

We can create binary vector abstractions of simple data structures:

Sets: A set of data {ζ1, ζ2, ..., ζm}, given a mapping between ζi and binary
vectors {z1, z2, ..., zm}, can be represented as z = z1 ⊕ z2 ⊕ ...⊕ zm. A union of
sets x and y, of m1 and m2 elements, with no elements in common, is:

x ∪ y = x⊕ y = x1 ⊕ x2 ⊕ ...⊕ xm1
⊕ y1 ⊕ y2 ⊕ ...⊕ ym2

(4)

However, equation (4) is not the general case. With unrestricted x and y:

x⊕ y = (x − y) ∪ (y − x) (5)

Furthermore, set intersection and complement is impossible to compute without
knowing the original vector values of the components.

Ordered Pairs: Represented by tuple ζx = (ζx, ζy), where ζx, ζy and ζz are
data points. If mapped to binary vector representations x, y, and z:

z = Πx⊕ y , or z = +c({Πx, y}) (6)

This random permutation Π then denotes the data type of ζz.

Sequences: We can interpret a sequence ζz = ζz1ζz2...ζzm of a particular data
type as a 2-tuple ζz = (ζz1 ...ζzm−1

, ζzm). With binary vectors z1, z2, ..., zm, this
reduces to a succession of pairings via equation (6):

z = Πm−1z1 ⊕Πm−2z2 ⊕ ...⊕Πm−izi ⊕ ...⊕Πzm−1 ⊕ zm (7)

where Πj is a permutation Π that permutes itself j times. If Π is random, then
Πj appears random too, with an expected distance fromΠ near 0.5. Equation (7)
holds inductively as ζz1ζz2 is Πz1 ⊕ z2, thus ζz1ζz2ζz3 is:

A Computational Theory for Life-Long Learning of Semantics 5

Π(Πz1 ⊕ z2)⊕ z3 = ΠΠz1 ⊕Πz2 ⊕ z3 = Π2z1 +Πz2 + z3

Continuing this for an arbitrarily long pattern gives equation (7). Similar rea-
soning will get us the equivalent with +c replacing XOR for the sum:

z = +c({Π
m−1z1,+c({Π

m−2z2, ...+c ({Π
m−izi, ...})...})}) (8)

Data Records: A unit of data containing one or more fields, where each com-
ponent has a specific meaning. Let a data record of type R = [r1r2...rm] of m
fields, where each binary vector ri is a field; for example, “name”, “age”, “gen-
der”, etc., for a record of a person. To set values to a field, we bind each field to
a value. Since the XOR of two vector mappings represents a set - essentially a
bound field - we can use ri ⊕ vi to bind a vi to ri. Given ri, we can recover vi,
or vice versa. We can generalize a bound data record Rv by:

Rv = [r1r2...rm][v1v2...vm]T

= r1 ⊕ v1 + r2 ⊕ v2 + ...+ rm ⊕ vm = +c({ri ⊕ vi})
(9)

To isolate the value of a field ri, we compute Rv ⊕ ri. The contribution of
unrelated fields will generally create random noise when ri distributes across
them, but only the contribution of the ri⊕vi will be non-random and significant,
as ri ⊕ ri ⊕ vi = vi, generating a signal that is close to v. This is because each
bit of Rv represents the majority of the terms ri ⊕ vi. High-dimensional binary
vectors resist such noise, so the closest neighbor to Rv ⊕ ri is likely vi.

3 Life-Long Learning of Semantics

3.1 A Geometric Interpretation of Semantics

Consider the task of learning semantic vectors given a knowledge graph K =
(V,E) consisting of nv vertexes V = {v1, ..., vnv

} and ne directed, weighted
edges E = {e1, ..., ene

}. Let any vi have mass equal to the number of times its
relationships have been observed, or a similar statistic. We can equate this to a
simple, undamped spring-mass system, with a few caveats. Since it is directed,
the target end of the edge is seen as fixed, converting mass (by edge weight)
into constant acceleration towards the target, or a connecting force. Let mass
generate a repelling proximal force similar to gravity, to prevent singularities.
This is somewhat akin to self-organizing maps [9]. Suppose vertexes exist in
n-dimensional space accompanied by a distance metric, with locations randomly
chosen. The structure of the knowledge graph causes the forces to be very high.
We wish to minimize them by placing vertexes in a “better” location. In order
to facilitate this, we define an “anchoring” vertex that cannot move from it’s
random position, connected to all vertexes with incoming edges. A minimized
configuration of this system is equivalent to a good semantic placement of vec-
tors, if an outgoing edge from a vertex signifies it should be more “similar” to the
target. Efficient algorithms exist for this minimization in the real domain [10].

6 P. Sutor, D. Summers-Stay et al.

3.2 Binary Vector Analogues

We will now construct a binary vector analogue of the geometric, knowledge
graph based semantic minimization problem. Let K be of m vertexes, X(k) ∈
B
m×n be a binary matrix, where m rows correspond to positional vectors for

m vertexes in K, n is the number of dimensions, and k is the iteration step.
Initially, X(0) is randomly selected. Let row 1 be the anchoring vector. Our
problem statement is to find a perturbation matrix X ∈ B

m×n such that:

argmin
X

(T (X(k) +X)) (10)

where T denotes the total tension in our system. Then, we setX(k+1) = X(k)+X

and continue. This is the sum of unresolved forces across all bits of a given A:

T (A) =

m
∑

i=1

n
∑

j=1

max(Fconn(A, i, j) + Fprox(A, i, j), 0) (11)

where Fconn and Fprox are the connective and proximal forces for vector i, bit
j in A. If the sum of these two forces for a bit are positive, it means the bit
wants to change, otherwise it wants to remain the same. Thus, a system with all
negative or 0 resultant forces is considered minimized. The proximal force is:

Fprox(A, i, j) =

m
∑

k=1,k 6=i

MiMk

H(Ai, Ak)2
Cprox(Aij , Akj) (12)

where Mi and Mk are the masses of the corresponding rows Ai and Ak of A.
This force is clearly analogous to gravitational force between two masses, but a
repulsive one, with normalized Hamming distance between them. Likewise:

Fconn(A, i, j) =

m
∑

k=1,k 6=i

MiWikCconn(Aij , Akj) (13)

is the connective force, where Wik denotes the directed edge weight between
vectors i and k, which is non-zero and less than or equal to 1 if it exists, and 0
otherwise. The functions Cprox and Cconn are special functions defined by:

Cprox(a, b) =

{

1, if a = b

−1, if a 6= b

}

Cconn(a, b) =

{

−1, if a = b

1, if a 6= b

}

(14)

which decide the direction forces act on the bit, depending on if the bits con-
nected have the same or differing value. As proximal force should push a away
from b’s value, it will add tension to the system only if the bits aren’t as far away
as possible. Connective force works the other way around, so Cconn = −Cprox.
Consider the sum of connective and proximal forces from equations (13) and (12):

A Computational Theory for Life-Long Learning of Semantics 7

Fig. 1. Example minimization per random row of a randomly connected 50 node
graph’s binary vectors via the greedy method. Without proximal force it reaches 0.

F =
∑

k

MiWikCconn(Aij , Akj) +
∑

k

MiMk

HN (Ai, Ak)2
Cprox(Aij , Akj)

=

m
∑

k=1,k 6=i

MiCconn(Aij , Akj)

[

Wik −
Mk

H(Ai, Ak)2

] (15)

by substitution from (14). Thus, our total tension function to minimize is:

T (A) =
m
∑

i=1

n
∑

j=1

max

(

∑

k

MiCconn(Aij , Akj)

[

Wik −
Mk

H(Ai, Ak)2

]

, 0

)

(16)

We can see from (16) that (15) is the term to minimize across i and j to find
perturbation X in (10). This can be found näıvely and greedily by randomly
trying to flip bits with row-weighted probabilities from (15) for a particular
vector and observing the change in total tension (16). Suppose you flip the first
bit in a row that satisfies an adaptive threshold for the ratio of the row’s tension
it accounts for. The Many-Body problem prevents feasible computation of all
Hamming Distances. We make the simplifying assumption that proximal force
exists only for connected nodes. Then, one can efficiently compute the difference
in forces for that row, and even the energies for all other rows affected, using
simple ±1 of Hamming Distances. After flipping, the next bit in the row which
gives a sufficient negative difference is found. The process repeats until no such
bits can be found and a new row is randomly selected. Figure (1) shows the
minimization of this technique for a randomly connected system. When proximal
force is ignored, minimization to 0 is guaranteed. But unwanted singularities
can occur on connected components, which proximal force avoids, although a
minimum of 0 is not guaranteed. Minimization grows linearly with the number
of nodes. This technique can be combined with Simulated Annealing and (self)
supervised Q-Learning over rewards of minimization of (16), which can not only
be online but also learn how to minimize.

8 P. Sutor, D. Summers-Stay et al.

Fig. 2. A pipeline of knowledge graph computation of vertexes for a simple linguistic
examples: raw characters, morphemes, words and parts of speech. Sequences of a space
are embedded within by permuting the new element in the sequence with a static Π

randomly chosen by the space. Crossing semantic spaces is performed by a consensus
record on components of the relationship, where anchor vertexes are the fields.

3.3 Incremental Life-Long Learning of Semantics

We now propose a general model for incremental, online learning of semantic
binary vectors. Initially, suppose we have some form of raw inputs of data (un-
supervised), whose possible values are discrete. For a working example, as shown
in Figure (2), let this be the space of characters in text. As input comes in to the
system, we start off by letting each new character or character sequence have
its own vertex and random binary vector (on order of n = 10, 000 components).
The space of characters is represented by a random, static vector C. As text is
read as raw input, the system builds connections between characters by placing
directed edges when two characters are next to each other. The weights of the
edges are the probability of the transitioning occurring over the number of oc-
currences of the character. The number of observations of the characters become
its “mass”. Simultaneously, when the system is presented at least a sequence of 2
characters, it can form a binary vector representation for this via a random and
static permutation Π , and (7). From the perspective of single characters, this is
the position of sequences of 2 characters. Generally, for sequences of l ≥ 3:

ζx1
ζx2

...ζxl
= ζx1

...ζxl−1
+ ζx2

...ζxl
→ Π(x1...xl−1 ⊕ x2...xl−1)⊕ x2...xl (17)

is the position of an l sequence from the perspective of an l − 1 sequence.
More generally, in a growing knowledge graph, this is two directed arcs a

and b coming together to a new vertex ab for the sequence. However, in the
space of a sequence, co-occurrences between other similar length sequences can
be recorded, and the tension in this system minimized for new binary vectors, to
get a stronger representation. Here, ab is represented by a local vector c. Since

A Computational Theory for Life-Long Learning of Semantics 9

we can compute a mapping between ab and c by ab ⊕ c, subsequently bigger
sequences should use this mapping. Frequencies from data and new edges in
the knowledge graph are recorded this way until the model decides to minimize
tension in each subsystem for new data. This process can be performed across
other models on the data, as Figure (2) shows. To map between data types, we
compute a record R that binds each value to types as fields with (9). We can do
this across different forms of raw data as well, as long as we have a model that
will map other data types to raw data (such as a classifier or static model). This
is shown for morphemes, words, and parts of speech in the figure, but this can
be done from the space of images to linguistic data, or other forms of raw data.

Suppose a new, supervised model appears. Since mapping between data types
is performed by records, we can easily add new information to it, as consensus
sum is commutative. This is tolerant to incremental learning. Since the dynamic
system for learning binary vectors proceeds arbitrarily, and edges/vertexes can
be added to K quickly, this is also online and incremental. We can continue to
add new models, read new data, and minimize tension in each system. If a model
exists that adds edges across different data types, we can cross boundaries se-
mantically and form more complicated data records. These can form hierarchical
structures of semantic organization across many mediums of data.

4 Discussion and Conclusion

Semantic Vector Operations: Local Hamming Distance measures similarity
for occupants of the same hierarchy, or from the perspective of a smaller se-
quence to a larger sequence. However, similarity across entire semantic spaces is
a difficult, potential research area. Data records can isolate values of fields and
compare their distances. We can also map ALL vertexes to the perspective of a
space of concepts that all data belongs in. Since vectors start off random, it’s
possible to measure the likelihood of two vectors to be within a certain distance,
as Kanerva [7] describes. XOR can also construct and deconstruct complex se-
mantic concepts and get vectors for new data, or even unbound anchor points.

Self Improvement: Self benchmarking of semantic learning can be performed.
If the nearest known neighbor for a data record with some missing fields is
incorrect, the system has can leverage the knowledge graph and upscale the
weights such that minimization of (16) makes it correct. So, if it fails often
in one area, it can over-represent similar tests in the future, allowing targeted
improvement. If incrementally trained enough, the system could form interesting
questions for humans to answer, in order to learn relationships that are not easy
to model. For example, if vectors are close, but share no knowledge graph edges,
the system can predict the odds of this randomly happening to either be sure a
relationship exists, or file it as a candidate relationship to cross-reference later.
Thus, this lends itself to interacting with humans and asking useful questions.

Conclusion: We have proposed a novel, general theory for directly learning
distributed binary semantic features from arbitrary data that can be put into the

10 P. Sutor, D. Summers-Stay et al.

form of a knowledge graph, whether supervised or unsupervised, to incrementally
learn high dimensional, semantic binary vectors online. This life-long learning is
a promising technique for combining semantic knowledge across many existing
models and raw data to build deep, useful, hierarchical representations. In future
work, we hope to implement and test this model on at least linguistic and visual
data in a manner that enables empirical testing of its properties.

5 Acknowledgements

The support of ONR under award N00014-17-1-2622 is gratefully acknowledged.

References

1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translat-
ing embeddings for modeling multi-relational data. In: Burges, C.J.C., Bottou, L.,
Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Infor-
mation Processing Systems 26, pp. 2787–2795. Curran Associates, Inc. (2013)

2. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings
of knowledge bases. In: 25th Conference on Artificial Intelligence (AAAI). pp. 301–
306 (2011)

3. Da Silva, J.C.P., Freitas, A.: Towards an approximative ontology-agnostic approach
for logic programs. In: International Symposium on Foundations of Information and
Knowledge Systems. pp. 415–432. Springer (2014)

4. Freitas, A., Curry, E.: Natural language queries over heterogeneous linked data
graphs: A distributional-compositional semantics approach. In: Proceedings of the
19th international conference on Intelligent User Interfaces. pp. 279–288. ACM
(2014)

5. Freitas, A., da Silva, J.C., ORiain, S., Curry, E.: Distributional relational networks.
In: 2013 AAAI Fall Symposium Series (2013)

6. Gougoux, F., Zatorre, R.J., Lassonde, M., Voss, P., Lepore, F.: A functional neu-
roimaging study of sound localization: Visual cortex activity predicts performance
in early-blind individuals. PLOS Biology 3(2) (01 2005)

7. Kanerva, P.: Hyperdimensional computing: An introduction to computing in dis-
tributed representation with high-dimensional random vectors. Cognitive compu-
tation 1(2), 139–159 (2009)

8. Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language
models. In: AAAI. pp. 2741–2749 (2016)

9. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480
(Sep 1990). https://doi.org/10.1109/5.58325

10. Liu, T., Bargteil, A.W., O’Brien, J.F., Kavan, L.: Fast simulation of mass-spring
systems. ACM Transactions on Graphics (TOG) 32(6), 214 (2013)

11. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. CoRR abs/1301.3781 (2013)

12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111–3119 (2013)

13. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proceedings of the IEEE 104(1), 11–33 (Jan 2016)

https://doi.org/10.1109/5.58325

A Computational Theory for Life-Long Learning of Semantics 11

14. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: Advances in neural information processing systems. pp.
3320–3328 (2014)

15. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. In: Advances in neural information processing systems. pp. 649–657
(2015)

	A Computational Theory for Life-Long Learning of Semantics

